
ASG-Manager Products™

Relational Technology Support: DB2
Version: 2.5.1

Publication Number: MPR0200-251-RELDB
Publication Date: November 2001

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this
information and disclosure to third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by

any means, without the express written consent of Allen Systems Group, Inc.

© 1998-2001 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples, Florida USA | asg.com

1333 Third Avenue South, Naples, Florida 34102 USA Tel: 941.435.2200 Fax: 941.263.3692 Toll Free: 1.800.932.5536

© 2001 Allen Systems Group, Inc.
All names and products are trademarks or registered trademarks of their respective holders.

ASG Documentation/Product Enhancement Fax Form
Please FAX comments regarding ASG products and/or documentation to (941) 263-3692.

Company Name Telephone Number Site ID Contact name

Product Name/Publication Version # Publication Date

Product:

Publication:

Tape VOLSER:

Enhancement Request:

ASG Support Numbers
ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

• Product name, version number, and release number

• List of any fixes currently applied

• Any alphanumeric error codes or messages written precisely or displayed

• A description of the specific steps that immediately preceded the problem

• The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

• Verify whether you received an ASG Service Pack for this product. It may include
information to help you resolve questions regarding installation of this ASG product. The
Service Pack instructions are in a text file on the distribution media included with the
Service Pack.

If You Receive a Voice Mail Message:

1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Severity Meaning Expected Support Response
Time

1 Production down,
critical situation

Within 30 minutes

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has
work-around solution

Within 4 hours

4 "How-to" questions and enhancement
requests

Within 4 hours

Business Hours Support

Non-Business Hours - Emergency Support

Your Location Phone Fax E-mail

United States and
Canada

800.354.3578

1.941.435.2201

Secondary Numbers:

800.227.7774

800.525.7775

941.263.2883 support@asg.com

Australia 61.2.9460.0411 61.2.9460.0280 support.au@asg.com

England 44.1727.736305 44.1727.812018 support.uk@asg.com

France 33.141.028590 33.141.028589 support.fr@asg.com

Germany 49.89.45716.300 49.89.45716.400 support.de@asg.com

Singapore 65.224.3080 65.224.8516 support.sg@asg.com

All other countries: 1.941.435.2201 support@asg.com

Your Location Phone Your Location Phone

United States and
Canada

800.354.3578
1.941.435.2201
Secondary Numbers:
800.227.7774
800.525.7775
Fax:
941.263.2883

Asia 011.65.224.3080 Japan/Telecom 0041.800.9932.5536

Australia 0011.800.9932.5536 New Zealand 00.800.9932.5536

Denmark 00.800.9932.5536 South Korea 001.800.9932.5536

France 00.800.9932.5536 Sweden/Telia 009.800.9932.5536

Germany 00.800.9932.5536 Switzerland 00.800.9932.5536

Hong Kong 001.800.9932.5536 Thailand 001.800.9932.5536

Ireland 00.800.9932.5536 United Kingdom 00.800.9932.5536

Israel/Bezeq 014.800.9932.5536

Japan/IDC 0061.800.9932.5536 All other countries 1.941.435.2201

ASG Web Site
Visit http://www.asg.com, ASG�s World Wide Web site.

Submit all product and documentation suggestions to ASG�s product management team at
http://www.asg.com/products/suggestions.asp

If you do not have access to the web, FAX your suggestions to product management at (941)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication�s front cover.

http://www.asg.com/products/suggestions.asp
http://www.asg.com

i

Contents

Preface . vii
About this Publication . vii

Publication Conventions. .viii

1 Introduction . 1
Features: The Tools Provided . 2
Corporate Repository . 3
Diagramming Functions . 4
Data Modeling and Design Functions. 4
Data Definition Language (DDL) Generator . 5
COBOL, PL/I, and Assembler Language Generator . 5
Dynamically Submitting SQL Statements to DB2 or SQL/DS . 6
Importing Information from DB2 . 6

Functions: How to Use the Tools Provided. 7
Standards . 7
DB2 Database Design . 8
Implementation . 11
Maintenance . 13
Summary . 16

Benefits . 17
A Shared and Reusable Corporate Model . 17
Automated Design. 19
Conclusion. 20

2 What Do You Want To Do? . 21
ASG Support for Your DB2 Environment . 21

Designing a DB2 Database . 21
DB2 Database Design . 21
Producing Output Describing the DB2 Design. 22

DB2 Repository Definition . 22
Documenting a DB2 Dictionary Schema . 22
DB2 Object Definition . 22

ASG-Manager Products Relational Technology Support: DB2

ii

Export to DB2 . 23
Generating Output . 23
Tailoring Generated Output . 24

Dynamically Submitting SQL Statements . 25

Importing from DB2 . 25

3 DB2 Database Design . 27
Introduction to DB2 Database Design. 28
Support for Referential Integrity. 30
Introduction to Referential Structures and Cycles . 31
Features to Support DB2. 31

Designing a DB2 Database . 32
Creating Entity and Userview Models . 32
Generating a Relational Schema . 33
Generating the DB2 Design . 34
Reporting the DB2 Design . 35
Populating the Dictionary with DB2 Members. 36
Examples of the DB2 Database Design Process . 37

DB2 Command Output. 54
Output from the DB2 REPORT Command . 54
Output from the DB2 PLOT CLUSTER Command . 63
Output from the DB2 PLOT REFERENTIAL-STRUCTURES Command 71
Output from the DB2 LIST TABLES Command . 81
Output from the DB2 LIST CYCLES Command . 83

Generated DB2 Member Definitions. 85
Generated DB2-TABLE Member . 85
Generated DB2-INDEX Member . 86
Generated DB2-VIEW Member . 87
Generated SYSTEM Member . 88

4 Repository Definition. 91
Introduction to Documenting a DB2 DBMS. 91

Documenting DB2 Objects . 92

Documenting the Columns of Indexes, Tables, and Views . 94

Documenting DB2 Security Information . 96

Naming Conventions for DB2 Members . 97
Generating External Names . 97
Naming Guidelines . 101

Interrogating Your DB2 Dictionary Schema . 102

Contents

iii

5 Export to DB2 . 105
Generating Output . 106
Submitting Generated Output to Your Relational Environment. 107

Tailoring Output . 109
Introduction to Tailoring . 110
Generating Object Names and External Names from Aliases 114
Tailoring DATE and TIME Character Field Lengths . 115
Generating a Host Language Data Structure with an SQL DECLARE Statement. . . . 116
Generating an SQL DECLARE Statement with a Host Language Data Structure. . . . 117
Setting the Release of DB2 . 117
Setting the Release Flag . 117
Generating Flat or Nested Data Structures . 117
Generating Indicator Structures . 118
Generating Indicator Suffixes on Structures . 118
Setting Suffixes Applied to Indicator Array Names . 119
Setting Suffixes Applied to Variable-Length Column Names 119
Automatically Generating SQL COMMENT ON/LABEL ON Statements 119
Generating One-, Two-, or Three-part Names for DB2 Objects. 120
Setting a Tolerance Level for Output . 121
Setting the SQL Escape Character . 121
Setting Width of Output for SQL COMMENT ON Statements 122
Setting Width/Indent of the SQL DROP Impact Analysis Report 122
Allowing an Optional Space Character when Generating SQL DECIMAL Datatypes 122
Accessing a Specific DB2 Subsystem or Plan . 123
Setting EXPORT Generated Object-name Length . 123
Setting the Generated Column Data Type . 124
Creating an INSERT Statement for Stored Procedures . 124
Introduction to User Exits . 124
Taking User Exits when Accessing a Repository Member. 125
Taking User Exits For Specified DB2 Export Functions . 125
Taking User Exits for an Individual Export Function. 129

6 Dynamic Import/Export . 131
Security and Authorization . 133

Output . 133

Using Executive Routines with Dynamic SQL Functions . 134
Variables Used for Dynamic Import/Export . 139
Control Variables . 139
Return Variables . 140
COMMAND and EXECUTIVE Members Used in Dynamic SQL Functions. 141
Creating and Populating a Table . 141
Inserting Rows into a Table . 142
Importing Information and Assigning it to Command Variables 144

ASG-Manager Products Relational Technology Support: DB2

iv

Submitting Any SQL Statement that Can Be Prepared . 146
Creating Your Own HELP Text . 147

7 Importing From DB2. 149
Introduction . 149
Naming Guidelines . 152
Documenting Columns . 155

Tailoring Import . 157
Tailorable Corporate Executive Routines . 158
Global Variables Used in the Import Commands . 160

8 Commands . 175
Command Descriptions . 176
DB2 ALTER . 176
DB2 BIND and DB2 REBIND . 189
DB2 COMMENT and DB2 LABEL. 200
DB2 CREATE. 206
DB2 DEBUG . 213
DB2 DECLARE . 216
DB2 DROP . 221
DB2 GRANT and DB2 REVOKE . 227
DB2 LIST CYCLES . 232
DB2 LIST TABLES . 233
DB2 PLOT CLUSTER . 235
DB2 PLOT REFERENTIAL-STRUCTURES . 238
DB2 POPULATE . 243
DB2 PREVIEW . 255
DB2 PRODUCE . 267
DB2 RECALCULATE . 275
DB2 REPORT. 278
DB2 SIZE . 281
DB2 SYNONYM . 285
EXTRACT DB2 . 289
ISQL . 296
POPULATE . 299
PREVIEW IMPORT. 302
RADD . 306
RECONCILE . 307
RIGN . 319
RREN . 320
RREP. 321
RUPD . 322

Output Generation Options . 324

Contents

v

Sending Generated Output to a USER-MEMBER . 324
Sending Generated Output to a Sequential Dataset . 325
Sending Generated Output to a Partitioned Dataset . 326
Sending Generated Output to PRINT . 326
Examples of Output Generation Options . 326

Name Editing Options. 327
Dropping or Replacing a Name. 328
Inserting a Character String Within a Name . 328
Examples of Name Editing Options . 329

9 Repository Member Types . 331
Member Type Descriptions . 331
DB2-ALIAS . 332
DB2-COLLECTION. 336
DB2-DATABASE. 338
DB2-DMS . 341
DB2-INDEX . 346
DB2-LOCATION . 367
DB2-PACKAGE . 369
DB2-PLAN . 375
DB2-PRIVILEGE . 381
DB2-PROCEDURE . 393
DB2-RENAME . 396
DB2-STOGROUP. 396
DB2-TABLE . 399
DB2-TBSPACE . 425
DB2-TRIGGER. 436
DB2-USER . 437
DB2-VIEW . 441

Reusing Existing Member Definitions. 464

Appendix A
Name Reduction Process . 467

Description . 467

Example . 468

Appendix B
Documenting Other Relational Databases . 471

ASG-Manager Products Relational Technology Support: DB2

vi

Appendix C
Defining and Generating
DB2 Member Types . 475

Relationship Between DB2 Member Types . 475

Data Types Generated from Form Descriptions . 478

Explanation . 480
NUMERIC-CHARACTER Form-descriptions . 482

Index. 483

vii

Preface

This ASG-Manager Products Relational Technology Support: DB2 is one of a series from
the ASG-Manager family of program products for organizations seeking to automate and
manage their application development and maintenance effort.

This publication provides ASG-Manager Products support for the DB2 environment. It is
assumed that you have basic understanding of ASG-Manager Products (herein called
Manager Products) and you are familiar with the DB2 environment and DB2 technology.

Allen Systems Group, Inc. (ASG) provides professional support to resolve any questions
or concerns regarding the installation or use of any ASG product. Telephone technical
support is available around the world, 24 hours a day, 7 days a week.

ASG welcomes your comments, as a preferred or prospective customer, on this
publication or on any ASG product.

About this Publication
This publication consists of these chapters:

• Chapter 1, "Introduction," gives you an introductory overview of the support
provided by Manager Products for DB2, and lists the benefits gained from using
such support.

• Chapter 2, "What Do You Want To Do?," directs you to the relevant documentation
in this manual.

• Chapter 3, "DB2 Database Design," describes how to automate the production of a
first-cut DB2 database design and populate your repository with relevant member
definitions.

• Chapter 4, "Repository Definition," relates how to document a DB2 environment in
your repository.

• Chapter 5, "Export to DB2," describes how to generate output to implement and
maintain your DB2 environment, and how to export output to DB2.

ASG-Manager Products Relational Technology Support: DB2

viii

• Chapter 6, "Dynamic Import/Export," explains how to dynamically submit
generated output to your DB2 environment, and receive the results, from within
Manager Products.

• Chapter 7, "Importing From DB2," outlines how to import information about
objects from your DB2 environment, and use this information to generate
repository members documenting the imported DB2 objects.

• Chapter 8, "Commands," provides an alphabetical list of descriptions of the
Manager Products commands that support your DB2 environment.

• Chapter 9, "Repository Member Types," supplies an alphabetical list of descriptions
of the repository member types that you use to document DB2 objects.

Publication Conventions
These conventions apply to syntax diagrams that appear in this publication.

Diagrams are read from left to right along a continuous line (the "main path"). Keywords
and variables appear on, above, or below the main path.

Convention Represents

�� at the beginning of a line indicates the start of a statement.

� at the end of a line indicates the end of a statement.

at the end of a line indicates that the statement continues on the line
below.

at the beginning of a line indicates that the statement continues from the
line above.

Keywords are in upper-case characters. Keywords and any required punctuation
characters or symbols are highlighted. Permitted truncations are not indicated.

Variables are in lower-case characters.

Statement identifiers appear on the main path of the diagram:

A required keyword appears on the main path:

An optional keyword appears below the main path:

�

�

� �COMMAND

� �COMMAND KEYWORD

� �COMMAND�
KEYWORD

Preface

ix

Where there is a choice of required keywords, the keywords appear in a vertical list; one
of them is on the main path:

or

Where there is a choice of optional keywords, the keywords appear in a vertical list,
below the main path:

The repeat symbol, <<<<<<, above a keyword or variable, or above a whole clause,
indicates that the keyword, variable, or clause may be specified more than once:

A repeat symbol broken by a comma indicates that if the keyword, variable, or clause is
specified more than once, a comma must separate each instance of the keyword, variable,
or clause:

The repeat symbol above a list of keywords (one of which appears on the main path)
indicates that any one or more of the keywords may be specified; at least one must be
specified:

The repeat symbol above a list of keywords (all of which are below the main path)
indicates that any one or more of the keywords maybe specified, but they are all optional:

Convention Represents

� �COMMAND
KEYWORD1
KEYWORD2
KEYWORD3

� �COMMAND KEYWORD1
KEYWORD2
KEYWORD3

� �COMMAND
KEYWORD1
KEYWORD2

� �COMMAND KEYWORD
��������

� �COMMAND KEYWORD
��������

� �COMMAND KEYWORD1
KEYWORD2

����������������

� �COMMAND
KEYWORD1
KEYWORD2

����������������

ASG-Manager Products Relational Technology Support: DB2

x

ASG uses these conventions in technical publications:

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database,
program, command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign
(+) is inserted for key combinations (e.g., Alt+Tab).

lowercase italic
monospace

Information that you provide according to your
particular situation. For example, you would replace
filename with the actual name of the file.

Monospace Characters you must type exactly as they are shown.
Code, JCL, file listings, or command/statement syntax.

Also used for denoting brief examples in a paragraph.

Vertical Separator Bar (|)
with underline

Options available with the default value underlined (e.g.,
Y|N).

1

1 1Introduction

This chapter includes these sections:

Features: The Tools Provided . 2
Corporate Repository . 3
Diagramming Functions . 4
Data Modeling and Design Functions. 4
Data Definition Language (DDL) Generator . 5
COBOL, PL/I, and Assembler Language Generator . 5
Dynamically Submitting SQL Statements to DB2 or SQL/DS 6
Importing Information from DB2 . 6

Functions: How to Use the Tools Provided. 7
Standards . 7
DB2 Database Design . 8
Implementation . 11
Maintenance . 13
Summary . 16

Benefits . 17
A Shared and Reusable Corporate Model . 17
Automated Design. 19
Conclusion. 20

ASG designs and builds Computer Aided Software Engineering (CASE) tools. These are
state-of-the-art tools, designed to help business users solve problems with the
development and maintenance of information systems.

Manager Products automates the major tasks involved in the design and implementation
of DB2 and SQL/DS databases and the applications that use them: progress from pictures
(analyst diagrams) through to practical solutions (databases and application programs).

Build and maintain an efficient DB2 or SQL/DS environment far faster than manual
methods using our tools.

The tools are based upon using a corporate repository to store all of the information an
organization needs to support business modeling, data processing, and application
development. The tools share a common user interface (including online documentation
and Help) which can be tailored to suit the environment used to and to suit users with
different skills.

 ASG-Manager Products Relational Technology Support: DB2

2

The import functions populate the corporate repository with members generated from
information imported from DB2 and SQL/DS.

An understanding of DB2 and SQL/DS and their terminology is assumed.

Features: The Tools Provided
These tools and functions to support DB2 and SQL/DS system life cycles are provided:

• A corporate repository

• Diagramming functions

• Data modeling and design functions

• A Data Definition Language (DDL) generator

• A COBOL, PL/1, and Assembler language data structure generator

• Dynamic SQL functions

• Import to DB2 functions.

ASG recommends using all of the above to support the entire system life cycle. However,
each tool can be used independently, as suits the purpose.

1 Introduction

3

Corporate Repository
These are the features of the corporate repository:

• A repository in which to store information that supports business modelling data
processing and application development activities

• Supports documentation of all DB2 and SQL/DS components including security
information and DB2 plans

• Supports referential integrity

• Supports the documentation of data held in major DBMS and sharing of the
documentation. For example, data shared between DB2 and IMS maybe
documented once only and maintained centrally

• Supports documentation and control of historical, production, and development
versions of a system and its components

• Populated using the following methods:

— Using diagrams created on your programmable workstation (PWS)

— Automatically, as the result of using data modeling and design functions

— Directly, using definition statements

— Importing information from external sources

• Interrogation and reporting capabilities.

Refer to Appendix B, "Documenting Other Relational Databases," on page 471 for details
of sharing the documentation of different relational databases.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
using a repository.

 ASG-Manager Products Relational Technology Support: DB2

4

Diagramming Functions
These are the features of the diagramming tool:

• Easy drawing of structured design diagrams including, for example, entity models
and organizational charts on a programmable workstation

• Support for diagramming and generating entity relationship models

• Load diagrams to a repository on the host (mainframe) system

• Diagram validation for consistency and logic according to predefined rules

• A local repository to download a subset of the host repository

• Lock information in the host repository while it is on the programmable workstation

• Interrogate the host repository while creating diagrams

• Tailor diagram objects, connectors, menus, and validation rules to suit your
environment

• Repository diagram generation produces hierarchical and network diagrams from
definitions in the local repository

Data Modeling and Design Functions
These are the features of data modeling and design functions:

• An automated database design and information modeling tool

• Supports most data analysis methodologies, both top down business-oriented
(entity modeling) and bottom-up application-oriented (userview modeling)
approaches

• Reconciles top-down and bottom-up design information

• Produces a normalized logical database design (1st, 2nd, or 3rd normal form)

• Produces design reports that enable you to evaluate the design

• Automatically populates the repository with a first-cut physical design made up of
tables, views, and indexes.

Refer to the ASG-DesignManager User’s Guide for details of data modeling and design
functions.

1 Introduction

5

Data Definition Language (DDL) Generator
These are the features of the DDL generator:

• Generates DDL statements for the major DBMS such as DB2, SQL/DS, and IMS

• Generates SQL statements (CREATE, ALTER, DROP, GRANT, etc.) from
repository documentation for submission to your DB2 or SQL/DS environment

• Supports referential integrity

• Generates impact analysis reports for DROP statements

• Uses a name reduction process to ensure that generated names are not too long for
SQL

• Can be tailored to suit your installation’s conventions and standards.

Refer to Chapter 5, "Export to DB2," on page 105 for details of DDL generation.

COBOL, PL/I, and Assembler Language Generator
These are the features of the source language generator:

• Generates host language data structures for inclusion in programs that access the
DBMS

• Uses a name reduction process to ensure that generated names conform to the rules
applying to the program language in which they are to be used

• Can be tailored to suit your installations conventions and standards

• Generates table layouts documenting the columns, edit procedures, field
procedures, and validation procedures of tables and views.

Refer to Chapter 5, "Export to DB2," on page 105 for details of Assembler language,
COBOL, and PL/I generation.

 ASG-Manager Products Relational Technology Support: DB2

6

Dynamically Submitting SQL Statements to DB2 or SQL/DS
 These are the features of dynamic SQL functions:

• Submits from within Manager Products to your relational environment, any SQL
statement that can be dynamically prepared for execution

• Receives from your relational environment and within Manager Products, result
tables generated in response to SQL queries

• Receives from your relational environment and within Manager Products,
SQLCODEs and SQL/DS HELP text

• Creates executive routines containing embedded SQL statements that can:

— Submit any SQL statements that can be dynamically prepared for execution

— Create and populate a table

— Insert rows into a table

— Import information from your relational environment and assign it to
Procedures Language variables.

Refer to Chapter 6, "Dynamic Import/Export," on page 131 for details of dynamic SQL
functions.

Importing Information from DB2
These are the features of the import facilities:

• Imports information about DB2 or SQL/DS objects onto the Workbench
Translation Area (WBTA)

• Generates proposed members from the imported information and provides:

— A reconciliation report comparing the proposed members with existing
repository members having the same name

— The ability to change the proposed members. Commands are provided which
enable you to work from the reconciliation report to make the changes.

— The ability to tailor how proposed members are generated so that they suit your
repository standards.

• Generates member definition statements for the proposed members in layouts
which may be tailored to suit your repository standards

• Enters the proposed members into the repository.

Refer to Chapter 7, "Importing From DB2," on page 149 for details of importing
information about DB2 objects.

1 Introduction

7

Functions: How to Use the Tools Provided
Each of the functions provided supports part of a DB2 or SQL/DS system life cycle. The
life cycle consists of these phases: design, implementation, and maintenance.

However, standards, particularly naming standards, need to be established and supported
throughout the life cycle. Before using Manager Products consider how they enable you
to promote standards throughout the life cycle.

Standards
Manager Products implement and control standards throughout the life cycle. Standards
may include naming, database development, and application development standards.

If your systems are documented in the repository, it can help you and your development
teams to identify homonyms (same name different thing) and can be checked for
synonyms (same thing different name). Checking for the existence of synonyms is an
easy matter if you have naming standards.

You can record several alternative names (aliases) for each definition in the repository, to
suit different application environments. When you come to generate SQL statements,
COBOL, PL/I, and/or Assembler language source direct from the repository, you can use
the relevant alias name instead of the unique name, by which the definition is retrieved. A
name reduction process is provided to ensure that the names generated are not too long
for the target environment.

So, you can help your development teams to adhere to your standards by providing, via
the repository, facilities that enable you to check and enforce them. If you do not have
naming standards, getting them off the ground will be easier if your environment is
controlled by use of a central repository.

In addition to naming standards you can promote your database and application
development standards. You can tailor our generation tools so that the output they
produce is automatically consistent with your standards.

Storing documentation of your standards in the repository or in the user definable help
system that is provided ensures that they are centrally available.

Using Manager Products to control the system life cycle ensures that the systems built
conforms to standards. This results in systems which are easier to understand and more
effective communications.

 ASG-Manager Products Relational Technology Support: DB2

8

DB2 Database Design
DB2 and SQL/DS database design involves two stages:

• Identification of the data and functions required to support a particular application
or several interrelated applications, and determine how that data is to be stored

• Deciding on the operational aspects of the database, considering for example, the
physical storage and performance requirements

Take referential integrity into account in both stages.

Identifying Data and Functional Requirements
Identify the data to be used in the database and define it in these forms:

Entity models. Data models that describe entities, their attributes, and the relationships
between them and

Userview models. Definitions of the databases’ end-user’s requirements.

Use the diagram editor to draw entity models on a programmable workstation and then
upload them to the host repository where they are converted into and held as definitions.
Definitions in the repository can be interrogated, reported, and used by data modeling and
design functions. The diagram editor checks diagrams, according to predefined rules, for
validity, consistency, and completeness.

The host repository is always available while you are using diagramming functions. You
can interrogate and report from the repository to obtain the information you need while
you are creating your entity relationship diagrams. If you are updating information which
is already in the repository, you can lock that information in order to prevent other users
from updating it until you are finished.

The information recorded in userviews is the result of detailed investigations by the data
analyst into existing documentation, table layouts, reports, and the requirements of the
databases’ end users. Userviews are entered as definitions directly to the repository.

Userview modeling is made much easier when your application systems are centrally
documented in the repository and you have implemented naming standards. You can look
up and document data element definitions and control names.

If you have used data modeling and design functions to design other DBMS databases
and that work was based on an entity model that is still current, you can reuse that entity
model and associated data element documentation already in your repository to design
DB2 and SQL/DS databases.

1 Introduction

9

For example, if you have recently designed an IMS database to support a transaction
application and want to extract data to use in an end-user inquiry service based on a DB2
database, you can exploit the entity model you created for the IMS design to design the
DB2 database. (This is one aspect of how our tools promote data sharing.)

Refer to Chapter 3, "DB2 Database Design," on page 27 for details of the design process.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
adding definitions to the repository.

LogicaI Database Design
Once the entity models and userviews are documented in the repository, they can be
moved onto the Workbench Design Area (WBDA) where you can design, automatically,
a third normal form relational schema (logical database design). If particular
circumstances such as stringent performance requirements dictate it, you can choose to
normalize to first or second normal form only.

A wide variety of design reports enable you to identify problems such as missing entities,
homonyms and synonyms, redundant and/or inconsistent end-user requirements, and thus
to resolve any conflicts between your userviews (bottom-up view) and Entities (top-down
view). The reports also enable you to analyze the generated referential structures.

Using these reports you can reline the design by adjusting your entity and userview
models and iterating design on the WBDA until you are satisfied with the design and the
you understand its referential structures.

Entity models are easily adjusted by redrawing entity relationship diagrams and
(re-)uploading them to the host repository. Userview models are adjusted by updating the
information in the repository, direct.

Refer to Chapter 3, "DB2 Database Design," on page 27 for details of the design process.

Refer to the ASG-ManagerView User’s Guide for details of creating entity model
diagrams.

Physical Database Design
Once you are satisfied with the relational schema, it can be automatically converted to a
first-cut physical design. The design comprises DB2 or SQL/DS tables, together with:

• Their respective primary keys and foreign keys and

• Unique indexes on the primary key for referential integrity.

You can also generate views, if they are required.

 ASG-Manager Products Relational Technology Support: DB2

10

You can and should review the design, on the WBDA, to ensure that it meets your
requirements. (At this point the design is represented as definitions of tables, indexes, and
views.)

Once you are satisfied with the design on the WBDA, the repository can be automatically
populated with definitions of the tables, views, and indexes that comprise the first-cut
physical design. The table definitions include clauses for primary and foreign keys. You
then complete the physical design in the repository.

Use the design reports to assist you to:

• Derive the referential structures of the tables

• Determine the DB2 table space or SQL/DS dbspace usage of related tables

• Decide the referential integrity constraints on the delete rules for tables

You can use the repository interrogation and reporting features to help generate the
information you need to make the final design decisions regarding operational and
performance requirements. For example, you can interrogate the repository to check
which tables are stored in which DB2 storage groups. You can also estimate the storage
space that will be required by tables and indexes in DB2.

Then you can add to the definitions comprising the design, information specific to
operational and performance requirements.

Complete the physical design with these steps:

• Document the other object types required: SQL/DS dbspaces or DB2 databases,
storage groups and table spaces as well as additional (non-primary) indexes.

• Document security and authorization information consisting of privileges and users.

1 Introduction

11

Some of the useful features that support complete documentation of the design are:

• Data definitions in the repository use the same terminology and keywords as SQL.

• As with DB2’s LIKE clause, you can specify that a table definition is to contain the
same columns (and other characteristics) as an existing table definition.

• Columns are documented as separate definitions. This gives you greater control
over data redundancy and data sharing between tables and between tables and other
non DB2 or SQL/DS systems

• Since columns in different tables can share the same data elements and the same
data elements can be shared by other DBMS, each data element definition can be
associated with several table definitions and with repository documentation of other
DBMSs such as IMS. (This is one aspect of how our tools encourage and help to
control data sharing.)

• You can attach labels and comments to tables and views and to individual columns
within them.

• You can define synonyms for users and generate SQL CREATE SYNONYM
statements (very useful after dropping a database or dbspace and having to recreate
large numbers of synonyms).

Refer to Chapter 9, "Repository Member Types," on page 331 for details of DB2
repository definitions.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
dictionary management commands.

Implementation

Exporting Your Design
When your database is fully documented in the repository, you can automatically
generate all of the SQL statements required to define objects in the DB2 or SQL/DS
Catalog.

You can also use the generation features to impose standards by tailoring them so that the
output they produce conforms to your standards and procedures for application
development.

Using the generators we provide, you can develop and maintain several DBMS
applications by exporting the required database objects and program code from the same
central data model.

Dynamic SQL functions enable you to submit SQL statements to DB2 or SQL/DS from
within the Manager Products environment.

Refer to Chapter 5, "Export to DB2," on page 105 for details of SQL generation.

 ASG-Manager Products Relational Technology Support: DB2

12

Refer to Chapter 6, "Dynamic Import/Export," on page 131 for details of dynamic SQL
functions.

Developing Applications
Having implemented the design you will already have started work on building
application programs that will access the data in the database.

You can generate the data declaration statements required in application programs,
automatically, from the definitions of tables and views in the repository. Data declaration
statements define the DB2 tables and views that the application accesses. You can use
repository definitions of plans to generate BIND or REBIND subcommands, which
produce application plans in DB2.

And you can generate data structures (that is, the host variables used to contain data
transferred to and from DB2 and SQL/DS) for COBOL, PL/I, and Assembler language
application programs.

Implementation will be smoother if you have used the repository to help you impose
naming standards.

When you come to generate COBOL, PL/I, and/or Assembler language source, you can
use the relevant alias name instead of the unique name which the definition is retrieved.
We have also provided a name reduction process to ensure that the names you generate
are not too long for the target environment.

By documenting your application programs in the repository, the impact of changes to
tables and views can be measured easily by interrogating the repository. Thus the
repository becomes an intelligent and active part of your change-control procedures.

Refer to Chapter 5, "Export to DB2," on page 105 for details of Assembler language,
COBOL, and PL/I generation.

Monitoring and Tuning the Design
Following the initial (probably pilot) implementation of the database design you will
want to experiment with the operational and performance aspects of the database design
in order to improve the performance of the applications that use it.

This involves:

• Monitoring the database in order to identify if tuning is required and what needs to
be done

• Adjusting the design in the repository, and then

• Regenerating the necessary components from the repository.

1 Introduction

13

For example, un-normalizing certain tables for performance reasons may involve
combining tables. You can interrogate the repository and generate SQL DROP statements
with full impact analysis reports to find out exactly what the effect of dropping an object
will be.

Of course the process of monitoring and tuning the database will not only follow the
initial implementation; it will be continuous.

Maintenance
After the implementation has gone live, it will be necessary to maintain it. Activities
typical during the maintenance phase are:

• Maintain the documentation of the implemented system and ensure that changes
and enhancements are documented in the repository

• Interrogation; for example, "where else is this field used?"

• Reporting; for example, you may want to send a complete list of all your tables and
views containing sales data to another office

• Adding columns to a table or changing some of its characteristics; for example,
adding a foreign key

• Authorize new users to use certain tables

• Add or amend comments to tables and views

• Add synonyms to tables and views

• Maintain application programs.

Change Management in the System Life Cycle
Once the database and associated application development has gone live and the
documentation in the repository is complete, it is likely that you will have to support
ongoing development as well as production systems.

Use the status functions to maintain both production and development versions of the
documentation in the repository.

Using statuses your development teams can create an updated version of the production
system documentation without changing the production version and without duplicating
what they do not change. Thus they can design, document and generate SQL, COBOL,
PL/I, and Assembler language for a new or changed version of the system under
development without affecting the production system and without being isolated from it.

Refer to the ASG-Manager Products Status Concepts manual for details about statuses.

 ASG-Manager Products Relational Technology Support: DB2

14

Interrogation and Reporting
You can interrogate, report from, and produce documentation of table layouts from the
repository in order to obtain information about the systems documented in it. For
example, you can interrogate the relationships between definitions for the purpose of
impact analysis and you can produce table layouts documenting tables and views and
their columns, edit procedures, field procedures, and validation procedures.

Refer to "DB2 PRODUCE" on page 267 for details of table layouts.

You can index repository definitions using keywords and classifications that are
meaningful in your environment. You can also add notes and other descriptive
information about the system. All such information can be retrieved easily when it is
required.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
dictionary management commands.

Using Dynamic SQL functions you can also interrogate your DB2 or SQL/DS
environment from within Manager Products.

Refer to Chapter 6, "Dynamic Import/Export," on page 131 for details of Dynamic SQL
functions.

Dropping and Altering Objects
Dropping objects is a powerful DB2 and SQL/DS feature: so powerful that it should be
used with care. If you generate your SQL DROP statements from the repository you get a
complete impact analysis report of what you will lose or affect before you drop the
object.

An object may only need to be dropped temporarily in order for you to perform some
major restructuring or maintenance: if you have a definition in the repository recreation
of the object is very simply done.

You can also generate ALTER TABLE statements from the definitions of tables in the
repository. This feature is task-driven; if it is necessary in order to achieve the alteration
you want, several ALTER statements will be generated automatically.

Security and Authorizations
When you want to grant or revoke privileges to and from users you can automatically
generate GRANT and REVOKE statements from the repository.

This is particularly useful if you have dropped a database (and everything that’s inside it);
you will usually need to re-GRANT many authorizations when the objects are recreated.

1 Introduction

15

Application Maintenance
When changing application programs, it is often necessary to make careful trade-offs and
technical decisions that require precise answers to queries of what other applications are
affected.

You can obtain the information you need to make such decisions from the repository. For
example, you can find out which programs use a particular column in a particular table if
that column is going to change in some way.

When application programs need to change you can change the repository definition and
regenerate data structures and DB2 data declaration statements easily.

Dynamic SQL Functions
Dynamic SQL functions enable you to dynamically submit SQL statements to DB2 or
SQL/DS from within Manager Products, and to receive the results.

Any SQL statement that can be dynamically prepared for execution can be submitted.

You can submit SQL statements that have been previously generated from the repository
by our Data Definition Language generator.

SQLCODEs and SQL/DS HELP text is displayed in response to unsuccessful statements.

You can interrogate your relational environment by submitting SQL SELECT statements
and receiving the result tables the statements generate.

Implementation and maintenance of your DB2 or SQL/DS environment can therefore be
carried out in the minimum amount of time.

For example, you could interrogate a table in DB2 or SQL/DS prior to using our DDL
generator to generate an SQL ALTER statement, and then submit that statement using
Dynamic SQL functions.

Refer to Chapter 6, "Dynamic Import/Export," on page 131 for details of dynamic SQL
functions.

Import Functions
Our import facilities enable you to import information about DB2 or SQL/DS objects
onto the Workbench Translation Area (WBTA) and to use that information to populate
the corporate repository. These are the major benefits of the import facilities:

• Manager Products users who have not documented their DB2 or SQL/DS
environment in the repository can do so in the minimum amount of time

• Users who have documented their environment can ensure that their existing
documentation is complete and accurate by reconciling it with information
imported from DB2 or SQL/DS.

 ASG-Manager Products Relational Technology Support: DB2

16

Having documented your DB2 or SQL/DS environment in the repository, you can use
Manager Products’s CASE tools to analyze, maintain, and improve that environment.

Powerful repository management commands enable you to alter members generated from
imported information so that they reflect any maintenance you intend to carry out in DB2
or SQL/DS.

Diagramming functions and data modeling and design functions enable you to analyze
the repository in order to produce a normalized logical design from which the repository
can be populated with a first-cut physical design. The import facilities therefore provide
the first step in the re-engineering process.

Using our generators for Data Definition Language and for source languages you can
generate SQL, COBOL, PL/I, and Assembler language from repository members.

Dynamic SQL functions enable you to dynamically submit generated SQL statements to
DB2 or SQL/DS from within Manager Products, and receive the results.

Generated COBOL, PL/I, and Assembler language can be transferred to an external file
for inclusion in your application programs.

Refer to Chapter 7, "Importing From DB2," on page 149 for details of the import
facilities.

Summary
The system life cycle and how you can use the tools we provide to support your use of
DB2 and SQL/DS can be summarized as follows:

• The design phase involves:

— Building entity (top down analysis) and/or userview (bottom-up analysis)
models

— Generating, automatically, a logical design (3NF relational schema)

— Generating a first-cut physical design in the repository

• The physical design is completed and documented in the repository and
implementation involves exporting SQL statements generated from it to your DB2
or SQL/DS environment

• The maintenance phase involves:

— Interrogating and reporting from the repository in order to obtain information
about the system

— Generating ALTER statements from the repository to reflect changing
requirements for tables

— Supporting security and authorizations in the database

1 Introduction

17

Benefits
The corporate repository is a central repository of reusable information about the
corporation, its data, and systems. The tools that we provide are productivity tools for
database design and application development.

The benefits that you can gain from use of the corporate repository and the productivity
tools based upon it, are described in this section.

A Shared and Reusable Corporate Model
The data used by most organizations changes very little in relation to the rate of change of
the application systems.

Using the corporate repository, you can create a central data model in which each data
element used by the corporation is defined only once, consistently, independent of any
particular DBMS/application.

Using import functions you can populate the corporate repository in the minimum
amount of time.

Using the generators we provide, you can develop and maintain several DBMS
applications, automatically, by exporting the required database objects and program code
from the central data model.

For example, if you use an IMS database for applications with high transaction rates and
extract data from the IMS database to DB2, the repository helps you control copy
management.

The central data model is the point of integration, control, and central reference shared
between:

• Your development teams and the end users and management

• Design, generation, and other productivity tools.

A corporate model is created when you document additional objects related to the
business of the enterprise, such as:

• Business plans, requirements, and rules

• Organizational units; for example, branches and departments.

So, the corporate repository becomes a communication tool to help you solve the
communications problems between DP personnel, end users, and management; it
provides a single source of all information across the full spectrum of your organization’s
applications. The fact that it is used actively in automated and semi-automated process
throughout the life cycle ensures that its contents are reliable.

 ASG-Manager Products Relational Technology Support: DB2

18

When combined with the use of a sound naming strategy, use of a corporate repository
will enable your organization to achieve a common conceptual view of your information
resource and vastly improve understanding and communications about that system.

The benefits include:

• Accurate and up-to-date documentation is readily available in one safe place

• Centralized information about your organization and its systems: multiple computer
systems, locations, DBMSs, databases, etc.

• Fast and accurate impact analysis at a corporate and local level. For example, you
can find out what the impact of a proposed change will be on your:

— Existing systems: reports, programs, databases

— Developing systems

— Organizational units.

• A data model that is independent of the physical implementation. You can tune the
physical design implementation without losing the logical (and therefore,
theoretically the best) design, from which it was derived.

• A data model that can be reused for design work across applications and life cycles

• Elimination of data duplication across applications because the repository helps
developers to find out what data already exists

• Data sharing that can be promoted and controlled

• Normalized data structures that minimize redundancy and maximize flexibility to
future change

• Standards can be introduced into the system development life cycle. For example,
the repository helps you to establish and foster meaningful naming standards and,
because the data model is driving all of the application Systems, throughout the
organization.

• Design information such as entity relationship diagrams and entity models can be
documented and is readily available for reuse.

All of the above reduce the time, resources, confusion, and expense involved in building
the information systems required to satisfy your organization’s information needs. They
help end users, DP personnel, and management to understand each other and do a better
job.

1 Introduction

19

Automated Design
A poorly designed database will result in time consuming and expensive software
revisions when business requirements change.

The benefits of creating a logical database design that is independent of the chosen
DBMS, has become apparent as the use of databases and the associated DBMSs has
increased and information systems become larger and more complex.

By providing a detailed and clear model of the systems information requirements, a
logical database design improves communications between analysts and end-users. It
ensures that the fundamental data structures required to support the end-users’
information needs are identified. It enables you to understand the whole business, not just
one application.

The value of a logical database design depends on several factors:

• Whether it describes all the types of data (data elements) that will be required in the
database

• Whether it accommodates all the end users’ requirements of the database (the
userviews)

• Whether, when implemented physically, it minimizes the duplication of the data
values that will be included in the database

• How well it can accommodate new requirements of the database, and the addition
of further types of data, as the database and associated applications evolve.

The corporate repository provides storage, documentation, and cross-referencing
facilities for the definition of data elements and userviews.

The amalgamation, analysis, and structuring of all the data elements and userviews to
produce a logical database design model that satisfies the requirements for:

• Minimal duplication of data values in the database

• Optimal stability with database evolution

• Referential integrity

is all done automatically by data modeling and design functions. If done manually, these
tasks are time-consuming, complex, and error-prone.

 ASG-Manager Products Relational Technology Support: DB2

20

Using data modeling and design functions, database designers are free to devote
themselves to aspects of the design process that require human judgment, such as:

• Evaluation of the logical model and userviews for omissions and errors

• The physical implementation of the model in the database

• Weighing the advantages and disadvantages of adjusting the physical model to
match the available hardware and meet particular performance requirements.

So, your database designers can:

• Build and verify logical and physical models of current and potential information
delivery systems

• Design and implement optimized database structures reflecting current and
potential needs

• Exploit and achieve maximum benefit from relational technology.

All of the above reduce the time and expense involved in design and implementation of
the systems required to satisfy your organizations information needs. The databases
produced in such an environment are well designed and therefore responsive to the need
for database evolution.

Conclusion
Using our tools your organization can respond rapidly to change and reduce the cost of
application systems design and implementation. Although your organization has to invest
money and resources in the building-up and maintaining of the corporate repository,
using it you can achieve:

• Consistency across systems

• Understanding of systems despite changing human resource and consequent
improvements in maintenance and development

• Better quality and more reliable systems.

Through automation of the major parts of the development life cycle, you can progress
from pictures on the programmable workstation to practical solutions (the actual database
and the applications based upon it) relatively fast.

You are using one product set that exploits the best of personal computer and mainframe
technology. You don’t have to become familiar with several different products from
several different vendors.

21

2 2What Do You Want To Do?

This chapter directs you to the documentation relevant to the task you wish to perform.
For each task, the relevant section and page in this publication is given.

ASG Support for Your DB2 Environment

Designing a DB2 Database

DB2 Database Design

Topic Page

Designing a DB2 Database 21

DB2 Object Definition 22

Generating Output 23

Dynamically Submitting SQL Statements 25

Importing from DB2 25

Topic Page

Designing a DB2 Database 32

Producing Output Describing the DB2 Design 22

DB2 PREVIEW 255

DB2 POPULATE 243

 ASG-Manager Products Relational Technology Support: DB2

22

Producing Output Describing the DB2 Design

DB2 Repository Definition

Documenting a DB2 Dictionary Schema

DB2 Object Definition

Topic Page

DB2 LIST TABLES 233

DB2 LIST CYCLES 232

DB2 REPORT 278
DB2 PLOT CLUSTER 235
DB2 PLOT REFERENTIAL-STRUCTURES 238

Topic Page

Documenting DB2 Objects 92

Documenting DB2 Security Information 96

Interrogating Your DB2 Dictionary Schema 102

Naming Guidelines 101

Topic Page

DB2-ALIAS 332

DB2-COLLECTION 336

Documenting the Columns of Indexes, Tables, and
Views

94

DB2-DATABASE 338

DB2-DMS 341

DB2-INDEX 346

DB2-LOCATION 367

DB2-PACKAGE 369

DB2-PLAN 375

DB2-PRIVILEGE 381

2 What Do You Want To Do?

23

Export to DB2

Generating Output

DB2-PROCEDURE 393

DB2-STOGROUP 396

DB2-TABLE 399

DB2-TBSPACE 425

DB2-TRIGGER 436

DB2-USER 437

DB2-VIEW 441

Topic Page

DB2 CREATE 206

DB2 DROP 221

DB2 SYNONYM 285

DB2 ALTER 176

DB2 GRANT and DB2 REVOKE 227

DB2 COMMENT and DB2 LABEL 200

DB2 DECLARE 216

DB2 PRODUCE 267

Data Types Generated from Form Descriptions 478

DB2 BIND and DB2 REBIND 189

DB2 DEBUG 213

DB2 SIZE 281

DB2 RECALCULATE 275

Topic Page

 ASG-Manager Products Relational Technology Support: DB2

24

Tailoring Generated Output

Sending Generated Output to a USER-MEMBER 324

Submitting Generated Output to Your Relational
Environment

107

Tailoring Output 109

Topic Page

Generating Object Names and External Names from
Aliases

114

Tailoring DATE and TIME Character Field Lengths 115

Generating an SQL DECLARE Statement with a Host
Language Data Structure

117

Setting the Release of DB2 117

Setting the Release Flag 117

Generating Flat or Nested Data Structures 117

Generating Indicator Structures 118

Generating Indicator Suffixes on Structures 118

Setting Suffixes Applied to Indicator Array Names 119

Setting Suffixes Applied to Variable-Length Column
Names

119

Automatically Generating SQL COMMENT
ON/LABEL ON Statements

119

Generating One-, Two-, or Three-part Names for DB2
Objects

120

Setting a Tolerance Level for Output 121

Setting the SQL Escape Character 121

Setting Width of Output for SQL COMMENT ON
Statements

122

Setting Width/Indent of the SQL DROP Impact
Analysis Report

122

Allowing an Optional Space Character when
Generating SQL DECIMAL Datatypes

122

Accessing a Specific DB2 Subsystem or Plan 123

Topic Page

2 What Do You Want To Do?

25

Dynamically Submitting SQL Statements

Importing from DB2

Setting EXPORT Generated Object-name Length 123

Setting the Generated Column Data Type 124

Taking User Exits when Accessing a Repository
Member

125

Taking User Exits For Specified DB2 Export Functions 125

Taking User Exits for an Individual Export Function 129

Topic Page

Creating and Populating a Table 141

Inserting Rows into a Table 142

Importing Information and Assigning it to Command
Variables

144

Submitting Any SQL Statement that Can Be Prepared 146

Creating Your Own HELP Text 147

Topic Page

EXTRACT DB2 289

RADD 306

PREVIEW IMPORT 302

Tailoring Import 157

Topic Page

 ASG-Manager Products Relational Technology Support: DB2

26

27

3 3DB2 Database Design

This chapter includes these sections:

Introduction to DB2 Database Design. 28
Support for Referential Integrity. 30
Introduction to Referential Structures and Cycles . 31
Features to Support DB2. 31

Designing a DB2 Database . 32
Creating Entity and Userview Models . 32
Generating a Relational Schema . 33
Generating the DB2 Design . 34
Reporting the DB2 Design . 35
Populating the Dictionary with DB2 Members. 36
Examples of the DB2 Database Design Process . 37

DB2 Command Output. 54
Output from the DB2 REPORT Command . 54
Output from the DB2 PLOT CLUSTER Command . 63
Output from the DB2 PLOT REFERENTIAL-STRUCTURES Command 71
Output from the DB2 LIST TABLES Command . 81
Output from the DB2 LIST CYCLES Command . 83

Generated DB2 Member Definitions. 85
Generated DB2-TABLE Member . 85
Generated DB2-INDEX Member . 86
Generated DB2-VIEW Member . 87
Generated SYSTEM Member . 88

 ASG-Manager Products Relational Technology Support: DB2

28

Introduction to DB2 Database Design
Figure 1 represents the support provided for DB2 at the different stages of the DB2
database design process. From top to bottom, it shows the commands used at each stage
to cause data to be input to the Workbench Design Area (WBDA), processed within it, or
output from it. The contents of the dictionary and WBDA and the outputs from the DB2
commands are also shown.

Figure 1 • DB2 Database Design

WORKBENCH DESIGN AREA

Normalized relational schema

DESIGN

Composite View of Dataviews

DB2 Design

DB2 LIST,
DB2 PLOT,
DB2 REPORT,
DB2 PREVIEW,
DB2 POPULATE

DB2 LIST,
DB2 REPORT,
DB2 PLOT,
DB2 PREVIEW

Reports/graphics

VIEWSETS
ENTITIES
USERVIEWS

DB2 TABLES

DICTIONARY

INDEXES, VIEWS

DB2 Table

Relation

homonym/synonym
design audit
relational representation

Reports/graphics

DB2 design
DB2 definitions

DB2 LIST,
DB2 PREVIEW,
DB2 REPORT,
DB2 PLOT

DB2 POPULATE

MERGE

DB2
POPULATE

3 DB2 Database Design

29

There are two major stages of DB2 database design in which ASG-DesignManager
participates:

• Identifying the data and functions required to support a particular application, or
several interrelated applications, and determining how that data is to be stored

• Deciding on the operational aspects such as physical storage and performance
requirements

DB2 provides data consistency among tables through referential constraints. The
enforcement of referential constraints, called referential integrity, ensures that all
references from one table to another are valid. Referential integrity spans both stages of
DB2 database design. It involves:

• Determining the primary keys and foreign keys for tables

• Deciding the referential constraints on the delete rules for the tables

• Defining tablespaces containing referential structures.

You can automate much of the DB2 database design procedure as follows:

• Define your data in the dictionary as userview and entity models, containing
USERVIEW and ENTITY members (collectively known as data-views)

• Create a composite view of the data in the WBDA by moving data in from the
models, using the MERGE command

• Create a relational schema in the WBDA, by using the DESIGN command both to
normalize the data to first, second, or third normal form, and to generate relations
from the normalized data

• Evaluate the relational schema, using the ASG-DesignManager PLOT and
REPORT commands

• Generate the DB2 design in the WBDA from the relational schema, using any of the
DB2 LIST, DB2 PLOT, DB2 REPORT, DB2 PREVIEW, or DB2 POPULATE
commands. The DB2 design consists of DB2 tables, with their primary and foreign
keys, as well as table indexes and views.

• Evaluate the tables in the DB2 design, using output from the DB2 LIST, DB2
PLOT, and DB2 REPORT commands

• Use the output from the DB2 LIST CYCLES and PLOT
REFERENTIAL-STRUCTURES commands to help plan which tablespaces to use
for storing the tables and which referential constraints to be used with the delete
rules for the tables

 ASG-Manager Products Relational Technology Support: DB2

30

• Generate (in the WBDA) and inspect dictionary definitions of DB2-TABLE,
DB2-INDEX, and/or DB2-VIEW members, using the DB2 PREVIEW command.
In addition, a dictionary SYSTEM member can be defined containing a list of all
the other generated dictionary members

• If the PREVIEWed definitions are satisfactory, then populate the dictionary with
the definitions, using the DB2 POPULATE command

• Complete the physical design of the DB2 database by adding
operational/performance information to the dictionary definitions.

This convention also applies to indexes and views.

Note:
If you wish, you can generate SQL CREATE TABLE statements straight from the
WBDA by using the PRODUCE DB2 command after you have generated the relational
schema. However, referential integrity is not supported by this command.

Support for Referential Integrity
DB2 provides data consistency among tables through referential constraints. The
enforcement of referential constraints, called referential integrity (RI), ensures that all
references from one table to another are valid. DB2 uses the primary keys and foreign
keys in DB2 tables to enforce RI.

ASG-DesignManager supports RI throughout the DB2 database design process. The
support includes:

• Determining the primary keys and foreign keys for the tables

• Helping you choose the referential constraints to be used with the delete rules for
the tables

• Helping you define tablespaces containing referential structures.

DB2 primary and foreign keys are generated when the relations in the relational schema
are converted to tables in the DB2 design. The foreign key relationships in which each
table participates are also derived.

When you use the DB2 PREVIEW or the DB2 POPULATE command to generate
DB2-TABLE dictionary definitions from the tables in the WBDA, they automatically
include primary key keywords and foreign key clauses to support RI unless you specify
the keyword NO-RI in the command to indicate that those clauses must be suppressed.

When relevant, a foreign key clause is generated for each foreign key relationship in
which the table participates as a dependent table. It includes each of the columns
comprising the foreign key. If the relationship is of the domain type, each column in the
foreign key is matched with the corresponding column in the primary key of the parent
table. The name of the parent table is included in each foreign key clause.

3 DB2 Database Design

31

The output from the DB2 PLOT and DB2 REPORT commands shows the relationships
which each selected table has with other tables in the WBDA. You can use the output
from these commands to help you identify the referential structures of the tables, and to
plan the tablespaces in which the DB2 tables should be stored.

The report outputs can help you design tile referential constraints for the delete rules
which apply to the DB2 tables, but before you can specify delete rules you need to know
the referential structure to which a table belongs and to be aware of any cycles.

Introduction to Referential Structures and Cycles
A referential structure may be described as a set of tables and relationships in which each
table is a parent or dependent of itself or of another table in the set. Each table that is a
parent or dependent is part of exactly one referential structure.

A cycle may be described as a path of relationships which connects a table to itself, in
which the arrows representing the relationships all flow in the same direction. You have
identified a cycle if you find the same table twice while tracing the dependent tables in a
referential structure. The presence of a cycle in a referential structure affects the
specification of delete rules, since a table must not be delete-connected to itself.

Awareness of referential structures and cycles is vitally important when making your
final decisions about the delete rules to apply to particular tables and about the
tablespaces in which the tables are to be stored.

The output of the DB2 PLOT REFERENTIAL-STRUCTURES command displays the
referential structures present in the DB2 design generated in the WBDA. The DB2 LIST
CYCLES command lists all cycles and, for each, the tables comprising the cycle.

Once you have decided on delete rules, you can specify them in each DB2-TABLE
member by updating the FOREIGN-KEY clause.

Features to Support DB2
The relational schema in the WBDA automatically converts to a DB2 design containing
DB2 tables, indexes, and views when you enter any of these commands (DB2 referential
integrity is fully supported):

DB2 LIST TABLES command. Produces a list of some or all of the tables in the DB2
design generated in the WBDA.

DB2 LIST CYCLES command. Produces a list of all the cycles found in the design
and, for each, the tables comprising the cycle.

DB2 REPORT command. Shows, for each selected table in the WBDA, the columns
comprising the table, the dependencies represented by the table, and any other tables to
which it is related.

 ASG-Manager Products Relational Technology Support: DB2

32

DB2 PLOT CLUSTER command. Shows, for each selected table in the WBDA, a
diagram in cluster form of its relationships with other tables and a matrix of all the tables
in the WBDA, showing all relationships which exist between them.

DB2 PLOT REFERENTIAL-STRUCTURES command. produces an overview plot
of the referential structures in the WBDA.

Once the DB2 design has been generated, you can generate dictionary definitions for
DB2 tables, indexes, and views.

DB2 PREVIEW command. Enables you to preview the generated DB2 dictionary
definitions before populating the dictionary with them.

DB2 POPULATE command. Automatically populates the dictionary with the
following member types (if you have the optional DB2 Definition facility installed):

• DB2-TABLE

• DB2-INDEX

• DB2-VIEW

• SYSTEM

PRODUCE DB2 command. Generates SQL CREATE TABLE statements directly
from the relations in the relational schema.

Designing a DB2 Database

Creating Entity and Userview Models
Having identified the data and functions needed to support a particular application, or
several inter-related applications, you begin the DB2 database design process by defining
your data in the dictionary. The definitions are in the form of entity models and userview
models.

Entity models. Data models composed of ENTITY members in which data elements
are defined as the attributes of entities and relationships are defined between the entities.

Userview models. Data models composed of USERVIEW members in which
dependencies between data elements are defined that satisfy the requirements of the
database end users.

Entities and userviews are collectively known as dataviews. Avoid using homonyms and
synonyms when naming data elements. USERVIEW and ENTITY members should refer
to validly named data elements.

3 DB2 Database Design

33

Refer to the ASG-DesignManager User’s Guide for details of dataviews, entities, and
userviews, and for details of naming data elements.

Generating a Relational Schema
After you have created entity and userview models in the dictionary, you can create a
relational schema.

Use the MERGE command to move data from the dictionary models into the WBDA to
build up a single composite view of the data (consisting of functional, multivalued, and
domain dependencies).

Next, use the DESIGN command to:

• Normalize the dependencies to first, second, or third normal form (1NF, 2NF, or
3NF)

• Identify potential keys and generate the relations of the relational schema

How far you wish to normalize the data depends on the needs of your installation; you
can generate a first-cut DB2 design from data in first, second, or third normal form.

The relational schema consists of a set of relations, each containing a key and usually
some non-key (non-prime) data elements. Each relation is identified by a unique WBDA
number.

Using the output of the PLOT and REPORT commands, you can evaluate the relational
schema to ensure that it satisfies your data access requirements. If not, you can modify
the input, re-MERGE and re-DESIGN the relational schema in iterative fashion until the
schema does meet your requirements. If you have a large amount of data to be evaluated,
it is easier to report it a bit at a time, so that you can analyze several reports separately,
rather than analyze one large one.

Once you are satisfied with the relational schema, you can generate a DB2 design from it
in the WBDA by issuing any ASG-DesignManager DB2 command. Each relation is
mapped into a table which is assigned the name and WBDA number of the relation from
which it is generated. It is important to make sure that every relation is named, because,
subsequently, dictionary definitions will not be generated from unnamed tables.

You may use the PRODUCE DB2 command at this point to generate SQL CREATE
TABLE statements straight from the WBDA.

Refer to the ASG-DesignManager User’s Guide for details of MERGE, DESIGN, and the
relational schema.

 ASG-Manager Products Relational Technology Support: DB2

34

Generating the DB2 Design
The DB2 design comprises tables generated directly from the relations in the relational
schema in the WBDA. It is stored in the WBDA along with the relational schema.

Each table is assigned the name and WBDA number of the relation from which it is
generated. Usually, each data element in the relation maps into a column of the table with
the same name. In addition, ASG-DesignManager identifies the primary key and any
foreign keys in each table (from the corresponding keys of the relation) for referential
integrity, as indicated in the correspondence table below, and also identifies the foreign
key relationships in which the table participates.

You should issue the DB2 LIST, DB2 PLOT, or DB2 REPORT command to generate
and report the DB2 design for the first time. Using the output from these commands, you
can examine and evaluate the tables of the generated design. You should ensure that the
contents of the tables and their relationships with each other satisfy your database access
requirements before you start to generate dictionary definitions from the tables.

You can also generate the DB2 design by entering the DB2 PREVIEW or DB2
POPULATE commands, but these commands do not provide a detailed report of the
tables in the DB2 design.

Table 1 shows the correspondence between the relations in the relational schema and the
tables in the DB2 design.

The relational schema contains a number of different types of associations, but in DB2
there is only one type of foreign key relationship.

Table 1 The Correspondence between the Relations in the Relational Schema and the
Tables in the DB2 Design

Relational Schema DB2 Design

Relation name, WBDA number Table name and WBDA number

Data elements in relation Columns in table

Set of one or more non-prime data elements
in role relation (where a domain
dependency holds from key of relation to
the set non-prime data elements)

Dropped from table (because, in each row,
the set of values would be identical to that of
the set of data elements comprising the of
primary key)

Primary key of relation Primary key of table

Foreign key of relation (except in the case
of a domain association; see below)

Foreign key of table

Foreign key, hierarchical-one, and domain
associations

Foreign key relationships

3 DB2 Database Design

35

When comparing graphical displays of the relational schema and the DB2 design, you
will notice that the direction of an association in the relational schema is opposite to that
of the corresponding relationship in the DB2 design.

In a relational schema, all foreign key, hierarchical-one, and domain associations are
directed from a source relation containing a foreign key to a target relation containing the
corresponding primary key. That is, the primary key of the target relation is a non-key set
of data elements in the source relation.

In DB2 a foreign key relationship is directed from a parent table containing a primary key
to a dependent table containing a foreign key. The foreign key is the same set of data
elements as the foreign key of the corresponding source relation except in the case of a
domain association, where the primary key of the dependent table is itself the foreign key
to the parent table.

Refer to "DB2 Command Output" on page 54 for details of the output from the DB2
LIST, DB2 PLOT, and DB2 REPORT commands.

Reporting the DB2 Design
Use the DB2 LIST, DB2 PLOT, and DB2 REPORT commands to produce listings, plots
and reports of the tables in the DB2 design. Any of these commands will cause the
relational schema to be converted to a DB2 design, if one does not exist already.

You should use the reports to check that the following meet your database access
requirements:

• Table columns

• Table primary keys

• Table foreign keys

• Relationships between tables.

If you find that tables do not contain the columns or keys that you expected, or that tables
are not related to each other in the way that you want them to be, you can:

• Modify the ENTITY and USERVIEW members in the dictionary

• Re-MERGE and re-DESIGN the data to produce a new relational schema

• Generate a new DB2 design.

You can repeat this process as often as you want until the results are satisfactory.

The outputs from these commands show how tables in the DB2 design are related to each
other. Furthermore, they show the referential structures and cycles present in the design.
You will need this information to plan the tablespaces in which the tables will be stored.
You will also need it when you design the referential integrity constraints for the tables’
delete rules, as you refine the DB2 design.

 ASG-Manager Products Relational Technology Support: DB2

36

Refer to "DB2 Command Output" on page 54 for details of the output from the DB2
LIST, DB2 PLOT, and DB2 REPORT commands.

Populating the Dictionary with DB2 Members
When you are satisfied with the DB2 tables in the WBDA, you can begin generating
DB2-TABLE, DB2-INDEX, and DB2-VIEW dictionary member definitions.

You can also generate a SYSTEM dictionary definition containing a list of the names of
all the DB2 members generated by the same command.

By now you should be at a sufficiently advanced stage in your design process for all the
tables in the WBDA to be named (that is, by use of the NAME command to name the
relations in the relational schema). ASG-DesignManager will not generate dictionary
definitions from unnamed tables.

You should first issue a DB2 PREVIEW command. This generates and reports DB2
dictionary definitions from the DB2 design in the WBDA without adding them to the
dictionary, so that you can first check them. Like the earlier stages of the design process,
previewing can be iterative -- you can keep generating a new DB2 design in the WBDA
and previewing the dictionary definitions until you are satisfied with them.

When you are satisfied with the definitions, you then can use the DB2 POPULATE
command to populate the dictionary with them. DB2 PREVIEW and DB2 POPULATE
generate exactly the same definitions, so by previewing the definitions you already know
what will go into the dictionary.

In the commands, you can specify that dictionary definitions are to be generated either
from all the DB2 tables in the WBDA or from a selection of tables indicated by name or
by WBDA number. You can also specify that the tables are to be processed in
alphanumeric order of table name.

When you generate DB2-TABLE members, the PRIMARY-KEY keywords, and foreign
key CONSTRAINT clauses needed to support referential integrity (RI) are generated
automatically unless you specify the keyword NO-RI in the command to indicate that
they are to be suppressed.

You can also start to assign tables to tablespaces at this stage. You may choose to have
one tablespace per table, or to store a whole referential structure in one tablespace, or to
have one or more referential structures spanning tablespaces.

The final decisions about how tables will be stored cannot be made until you have
ascertained the referential structures and cycles to which individual tables belong.

This information is provided by output from the DB2 PLOT
REFERENTIAL-STRUCTURES and DB2 LIST CYCLES commands.

3 DB2 Database Design

37

With the DB2 PREVIEW or POPULATE command, you can generate a DB2-VIEW
member for each DB2-TABLE generated so that users do not access the DB2 tables
directly.

In addition, a DB2-INDEX member, representing a primary key index, can be generated
for each selected table.

You can tailor the format of the generated dictionary definitions by specifying, in the
DB2 PREVIEW or POPULATE command, the name of a predefined FORMAT member
to be used for formatting, provided that the optional User Formatted Output facility is
installed.

Refer to "DB2 Command Output" on page 54 for details of the output from the DB2
LIST, DB2 PLOT, and DB2 REPORT commands.

Refer to "DB2 PREVIEW" on page 255 for details of the DB2 PREVIEW command and
"DB2 POPULATE" on page 243 for details of the DB2 POPULATE command.

Examples of the DB2 Database Design Process

Introduction to Examples
In these two examples, you are taken through the DB2 design process and the method of
refining the design. Both examples show specifically how domain associations in the
relational schema are converted into DB2 foreign key relationships. The examples are the
Department model and the Parts model.

When displaying the relational schema in these examples, associations are directed from
the source relation (containing the foreign key) to the target relation (containing the
corresponding primary key). When displaying the DB2 design, relationships are directed
from the parent table to the dependent table—the reverse direction.

Department Model Example
The Department model example shows how to define the relationships between
employees (including managers), their departments, and the offices in which the
departments are situated.

 ASG-Manager Products Relational Technology Support: DB2

38

There are three entities in this organization; they represent employees, departments and
offices, and their interrelationships, as shown in Figure 2.

Figure 2 • Departmental Model Example: Diagram Showing Entities and Their Interrelationships

Begin by defining the ENTITY members in the dictionary and naming them
EMPLOYEE-ENT, MANAGER-ENT, DEPARTMENT-ENT, and OFFICE-ENT, as
shown below.

EMPLOYEE-ENT
 ENTITY
 IDENTIFIER ISEMPLOYEE-NO
 ONE-ATTRIBUTES AREEMPLOYEE-NAME
 SUB-ENTITIES AREMANAGER-ENT

MANAGER-ENT
 ENTITY
 IDENTIFIER ISMANAGER-NO

DEPARTMENT-ENT
 ENTITY
 IDENTIFIER ISDEPARTMENT-NO
 ONE-ATTRIBUTES AREDEPARTMENT-NAME
 ONE-ASSOCIATION TOMANAGER-ENT
 MULTI-ASSOCIATION TOEMPLOYEE-ENT

OFFICE-ENT
 ENTITY
 IDENTIFIER ISOFFICE-LOCATION
 ONE-ATTRIBUTES AREOFFICE-NAME
 MULTI-ASSOCIATION TO DEPARTMENT-ENT

The entity EMPLOYEE-ENT represents an employee. It has:

• The identifier (key attribute), EMPLOYEE-NO

• A one-attribute (non-prime attribute), EMPLOYEE-NAME

• A sub-entity, MANAGER-ENT.

Accommodates Many
Departments

DEPARTMENT

EMPLOYEE

OFFICE

Has Many
Employees

Has One
Manager

3 DB2 Database Design

39

The sub-entity MANAGER-ENT also represents an employee, but one who plays the
'role' of a manager. It has the identifier, MANAGER-NO. The domain (or set of all valid
values) of MANAGER-NO is a subdomain or subset of the domain of EMPLOYEE-NO,
reflecting the fact that every manager is also an employee.

Thus, each employee is identified by an employee number, has a name, and may be a
manager.

The entity DEPARTMENT-ENT represents a department. It has:

• The identifier (key attribute), DEPARTMENT-NO

• A one-attribute (non-prime attribute), DEPARTMENT-NAME

• A one-association (one-relationship) to the entity MANAGER-ENT

• A multi-association (many-relationship) to the entity EMPLOYEE-ENT.

That is, each department is identified by a department number, has a name and one
manager, but may contain many employees.

The entity OFFICE-ENT represents an office location. It has:

• The identifier (key attribute), OFFICE-LOCATION

• A one-attribute (non-prime attribute), OFFICE-NAME

• A multi-association (many-relationship) to the entity DEPARTMENT-ENT.

That is, each office is identified by an office location, has a name, and can accommodate
many departments.

If the entities EMPLOYEE-ENT, DEPARTMENT-ENT, and OFFICE-ENT are merged
into the WBDA, using the MERGE command, the dependencies in Table 2 are derived:

Table 2 Department Model example: Derived Dependencies

Dependency Derived from Entity

EMPLOYEE-NO EMPLOYEE-NAME EMPLOYEE-ENT

MANAGER-NO EMPLOYEE-NO EMPLOYEE-ENT

DEPARTMENT-NO DEPARTMENT-NAME DEPARTMENT-ENT

DEPARTMENT-NO MANAGER-NO DEPARTMENT-ENT

DEPARTMENT-NO EMPLOYEE-NO OEPARTMENT-ENT

OFFICE-LOCATION OFFICE-NAME OFFICE-ENT

OFFICE-LOCATION DEPARTMENT-NO OFFICE-ENT

 ASG-Manager Products Relational Technology Support: DB2

40

You can now normalize the dependencies of the composite view, identify potential keys,
and generate relations using the DESIGN command. The generated relations constitute
the relational schema.

Refer to the ASG-DesignManager User’s Guide for details of how dependencies are
derived from ENTITY definitions.

The relational schema generated by the DESIGN command for the Department model
example contains six relations representing the dependencies in the WBDA. The
dependencies were generated from the entities, EMPLOYEE-ENT, MANAGER-ENT,
DEPARTMENT-ENT, and OFFICE-ENT.

Table 3 shows the data elements in each relation. The names of data elements comprising
the key of each relation are shown in capitals. The names of the non-prime data elements
are shown in lower case.

Table 3 Table of Relations and their component Data Elements

Relation Name Data Elements Comprising Relation

EMPLOYEE EMPLOYEE-NO employee-name

MANAGER MANAGER-NO employee-no

DEPARTMENT DEPARTMENT-NO department-name manager-no

DEPARTMENT-
MEMBER

DEPARTMENT-NO EMPLOYEE-NO

OFFICE OFFICE-LOCATION office-name

OFFICE-DEPART
MENT

OFFICE-LOCATION DEPARTMENT-NO

3 DB2 Database Design

41

Figure 3 shows the six relations with their respective primary key data elements and the
foreign key associations, domain associations, and hierarchical-one associations in which
they participate.

Figure 3 • Department Model Example: Diagram Showing Associations of the Relations

The contents of the relations are described below, including, for each, its key, its
non-prime data elements (if any) and any associations in which it participates as the
source relation.

MANAGER is a role relation. It has:

• The key MANAGER-NO

• The non-prime data element employee-no

• A domain association leading from it to the target relation EMPLOYEE, via the
domain dependency from its key MANAGER-NO to the key EMPLOYEE-NO of
the target relation.

DEPARTMENT is an FD relation. It has:

• The key DEPARTMENT-NO

• The non-prime data elements department-name and manager-no

• A foreign key association leading from it to the target relation MANAGER, where
its non-prime data element, manager-no, is also the key MANAGER-NO of
MANAGER.

DEPARTMENT-MEMBER

DEPARTMENT-NO

DEPARTMENT-NO

EMPLOYEE-NO

OFFICE

EMPLOYEE-NO

MANAGER-NO

MANAGER

DEPARTMENT

OFFICE-LOCATION
DEPARTMENT-NO

OFFICE-DEPARTMENT

OFFICE-LOCATION

EMPLOYEE

=======>

 ASG-Manager Products Relational Technology Support: DB2

42

OFFICE-DEPARTMENT is an MVD (all-key) relation. It has:

• A composite key consisting of the prime data elements OFFICE-LOCATION and
DEPARTMENT-NO

• A hierarchical-one association leading from it to the target relation
DEPARTMENT. The prime data element DEPARTMENT-NO, of
OFFICE-DEPARTMENT, is also the key of DEPARTMENT.

• A hierarchical-one association leading from it to the target relation OFFICE. The
prime data element OFFICE-LOCATION, of OFFICE-DEPARTMENT, is also the
key of OFFICE.

DEPARTMENT-MEMBER is an MVD (all-key) relation. It has:

• A composite primary key comprised of the data elements DEPARTMENT-NO and
EMPLOYEE-NO

• A hierarchical-one association leading from it to the target relation
DEPARTMENT. The prime data element DEPARTMENT-NO, of
DEPARTMENT-MEMBER, is also the key of DEPARTMENT.

• A hierarchical-one association leading from it to the target relation EMPLOYEE.
The prime data element EMPLOYEE-NO, of DEPARTMENT-MEMBER, is also
the key of EMPLOYEE.

EMPLOYEE is an FD relation. It has:

• The key EMPLOYEE-NO

• The non-prime data element employee-name

• No associations leading from it.

OFFICE is an FD relation. It has:

• The key OFFICE-LOCATION

• The non-prime data element office-name

• No associations leading from it.

Refer to the ASG-DesignManager User’s Guide for details of the structure of the
relational schema.

3 DB2 Database Design

43

You can now generate the DB2 design from the relational schema, by issuing any of these
commands:

• DB2 LIST

• DB2 REPORT

• DB2 PLOT

• DB2 PREVIEW

• DB2 POPULATE.

The DB2 design generated from the relations EMPLOYEE, MANAGER,
DEPARTMENT, DEPARTMENT-MEMBER, OFFICE, and OFFICE-DEPARTMENT
contains six tables.

When a table in the DB2 design is generated from a relation in the relational schema, the
table takes the name and WBDA number of its source relation. In general, all of the data
elements of the relation become the columns of the table, where the columns that
correspond to the key of the relation become the primary key of the table.

But in this example the role relation MANAGER is an exception. Its non-prime data
element employee-no is omitted from the table because the set of valid values of
MANAGER-NO is a subset (subdomain) of the set of valid values of EMPLOYEE-NO.
If employee-no was included, each row of the table would contain the same value for
both MANAGER-NO and employee-no.

The six tables in the generated DB2 design are shown below. The columns comprising
the primary key of the table are shown in capital letters. The non-key columns of the table
are shown in lower case.

Table 4 Department Model Example: Contents of the Tables in the Generated DB2
Design

Table Name Columns Comprising Table

EMPLOYEE EMPLOYEE-NO employee-name

MANAGER MANAGER-NO

DEPARTMENT DEPARTMENT-NO department-name manager-n
o

DEPARTMENT-MEMBER DEPARTMENT-NO EMPLOYEE-NO

OFFICE OFFICE-LOCATION office-name

OFFICE-DEPARTMENT OFFICE-LOCATION DEPARTMENT-N
O

 ASG-Manager Products Relational Technology Support: DB2

44

Figure 4 represents the generated DB2 design. It displays all six tables with their
respective primary key columns and the foreign key relationships in which they
participate.

Figure 4 • Department Model Example: Diagram Showing the Relationships of the Tables in the
Generated DB2 Design

The contents of the tables are described below, including each primary key, non-prime
columns (if any), and any foreign key relationships in which it participates as either the
parent or the dependent table.

EMPLOYEE is a parent table. It has:

• The primary key EMPLOYEE-NO

• The non-prime column employee-name

• The dependent table DEPARTMENT-MEMBER in which the primary key
component, EMPLOYEE-NO, is the foreign key to EMPLOYEE

• The dependent table MANAGER in which the primary key, MANAGER-NO, is the
foreign key to EMPLOYEE.

MANAGER is both a parent table and a dependent table. It has:

• The primary key, MANAGER-NO, which is the only column in the table

• The dependent table DEPARTMENT in which the non-prime column, manager-no,
is the foreign key to MANAGER

• The parent table EMPLOYEE. In this relationship, the primary key
MANAGER-NO (or MANAGER) is the foreign key to EMPLOYEE.

DEPARTMENT-MEMBER

DEPARTMENT-NO

DEPARTMENT-NO

EMPLOYEE-NO

OFFICE

EMPLOYEE-NO

MANAGER-NO

MANAGER

DEPARTMENT

OFFICE-LOCATION
DEPARTMENT-NO

OFFICE-DEPARTMENT

OFFICE-LOCATION

EMPLOYEE

3 DB2 Database Design

45

DEPARTMENT is both a parent table and a dependent table. It has:

• The primary key, DEPARTMENT-NO

• The non-prime columns department-name and manager-no

• The dependent table DEPARTMENT-MEMBER in which the primary key
component, DEPARTMENT-NO, is the foreign key to DEPARTMENT

• The dependent table OFFICE-DEPARTMENT in which the primary key
component, DEPARTMENT-NO, is the foreign key to DEPARTMENT

• The parent table MANAGER. In this relationship, the non-prime column
manager-no (of DEPARTMENT) is the foreign key to MANAGER.

DEPARTMENT-MEMBER is a dependent table. It has:

• A composite primary key with DEPARTMENT-NO and EMPLOYEE-NO as the
component prime columns

• The parent table DEPARTMENT. In this relationship, the prime column
DEPARTMENT-NO (of DEPARTMENT-MEMBER) is the foreign key to
DEPARTMENT.

• The parent table EMPLOYEE. In this relationship, it is the prime column
EMPLOYEE-NO (of DEPARTMENT-MEMBER) that is the foreign key to
EMPLOYEE.

OFFICE-DEPARTMENT is a dependent table. It has:

• A composite primary key with OFFICE-LOCATION and DEPARTMENT-NO as
the component prime columns

• The parent table DEPARTMENT. In this relationship, the prime column
DEPARTMENT-NO (of OFFICE-DEPARTMENT) is the foreign key to
DEPARTMENT.

• The parent table OFFICE. In this relationship, it is the prime column
OFFICE-LOCATION (of OFFICE-DEPARTMENT) that is the foreign key to
OFFICE.

OFFICE is a parent table. It has:

• The primary key OFFICE-LOCATION

• The non-prime column office-name

• The dependent table OFFICE-DEPARTMENT in which the primary key
component, OFFICE-LOCATION, is the foreign key to OFFICE.

So far, the example has illustrated how a DB2 design is generated in the WBDA. When
you enter the DB2 PREVIEW or DB2 POPULATE command, dictionary definitions are
generated automatically for the six DB2 tables, with their respective primary keys and
foreign keys.

 ASG-Manager Products Relational Technology Support: DB2

46

Once the definitions of these tables are in the dictionary you may wish to add more
clauses to them. You may also wish to refine some of the generated tables for
performance reasons; for instance, you may decide to split or combine some tables.

Let us examine the table MANAGER, which may seem strange because it has only one
column. In the example, there is an implied functional dependency from
EMPLOYEE-NO (the key of the table EMPLOYEE) to MANAGER-NO (the key of this
table). Therefore, it could be useful to merge MANAGER into EMPLOYEE, so that
EMPLOYEE would contain an additional column of manager-no.

Then each row in the table containing a value of EMPLOYEE-NO for an employee
would contain a different value of manager-no for the employee’s manager. Manager-no
then would be a foreign key because each value of manager-no would also appear (in a
different row) as a value of EMPLOYEE-NO. Thus the table EMPLOYEE would
become a self-referencing table; that is, it would be both parent and dependent in the
same relationship.

This is shown in Figure 5:

Figure 5 • Department Figure Example: The Table EMPLOYEE as a Self-Referencing Table

The table EMPLOYEE would then become the parent of the table DEPARTMENT,
where the column manager-no in DEPARTMENT would be the foreign key to
EMPLOYEE.

On the other hand, you may prefer to keep the table MANAGER, because it ensures
integrity by containing a list of valid managers. That is, when inserting a new row into the
table DEPARTMENT, the referential integrity constraints will validate the manager
number by checking it against the MANAGER table. You may also feel that
MANAGER, containing a list of valid managers, is useful in its own right; in the future
you may have plans to add new attributes or relationships to the entity MANAGER.

The final decisions about operation and performance are made by the database designer.
You can then complete the physical design or the DB2 database by documenting those
decisions in the relevant DB2-TABLE, DB2-INDEX, and DB2-VIEW dictionary
members.

EMPLOYEE-NO employee-name manager-no

3 DB2 Database Design

47

Parts Model Example
The Bill of Materials (BOM) problem (often referred to as the parts explosion problem) is
one of the most common in the manufacturing industry, arising from the need to
distinguish between large objects and the smaller objects of which they are composed.

In this example, there is an entity called PART. Its relationship with other manufacturing
parts is represented as shown in Figure 6.

Figure 6 • Parts Model Example: The Relationship of PART with other Manufacturing Parts

Begin by defining two ENTITY members in the dictionary, PART-ENT and
COMPONENT-ENT. Define the subentities MAJOR-PART-ENT and
MINOR-PART-ENT as subentities of PART-ENT.

PART-ENT
ENTITY
IDENTIFIER ISPART-NO
ONE-ATTRIBUTES AREPART-NAME, PART-PRICE, PART-QTY-IN-STOCK
SUB-ENTITIES AREMAJOR-PART-ENT, MINOR-PART-ENT

MAJOR-PART-ENT
ENTITY
IDENTIFIER ISMAJOR-PART-NO

MINOR-PART-ENT
ENTITY
IDENTIFIER ISMINOR-PART-NO

COMPONENT-ENT
ENTITY
IDENTIFIER ISMAJOR-PART-NO, MINOR-PART-NO
ONE-ATTRIBUTES AREASSEMBLY-QUANTITY

where the entity PART-ENT represents a part in a manufacturing assembly. It has:

• The identifier (or key attribute) PART-NO

• One-attributes (non-prime attributes) PART-NAME, PART-PRICE, and
PART-QTY-IN-STOCK

• The two sub-entities MAJOR-PART-ENT and MINOR-PART-ENT.

PARTPart Is
Made Up
Of Other Parts

Part Is
Used In
Other Parts

 ASG-Manager Products Relational Technology Support: DB2

48

The two sub-entities are also parts, but each assumes a special role in the assembly of a
part; MAJOR-PART-ENT represents a larger part made up of smaller parts, and
MINOR-PART-ENT represents a smaller part used in the assembly of larger parts.

The identifier of MAJOR-PART-ENT is MAJOR-PART-NO, and the identifier of
MINOR-PART-ENT is MINOR-PART-NO. The domain (the set of all valid values) of
each of MAJOR-PART-NO and MINOR-PART-NO is a subdomain or subset of the
domain of PART-NO.

In summary, each part is identified by a part number and has as its attributes a part name,
a part price, and a part quantity in stock. Also, a part can assume the role of a major part
composed of minor parts, or the role of a minor part used in the assembly of a major part.

The entity COMPONENT-ENT represents the composition of the components in an
assembly. It states that, for each component (that is, for each major part), there is a fixed
number of each of the minor parts used in its assembly. The entity COMPONENT-ENT
has:

• The composite identifier consisting of the attributes MAJOR-PART-NO and
MINOR-PART-NO

• The one-attribute assembly-quantity, specifying the number of each minor part used
in the assembly of the major part. When the entities PART-ENT and
COMPONENT-ENT are merged into the WBDA using the MERGE command,
these dependencies are derived:

You can now normalize the dependencies of the composite view, identify potential keys,
and generate relations, using the DESIGN command. The generated relations constitute
the relational schema.

Refer to the ASG-DesignManager User’s Guide for details of how dependencies are
derived from ENTITY definitions.

Table 5 Parts Model Example: Derived Dependencies

Dependency Derived from Entity

PART-NO PART-NAME PART-ENT

PART-NO PART-PRICE PART-ENT

PART-NO PART-QTY-IN-STOCK PART-ENT

MAJOR-PART-NO PART-NO PART-ENT

MINOR-PART-NO PART-NO PART-ENT

MAJOR-PART-NO ASSEMBLY-QUANTITY COMPONENT-ENT

MINOR-PART-NO

3 DB2 Database Design

49

The relational schema generated by the DESIGN command for the parts explosion
problem contains four relations representing the entities PART-ENT,
MAJOR-PART-ENT, MINOR-PART-ENT, and COMPONENT-ENT, as well as the
generated dependencies in the WBDA.

Table 6 shows the data elements in each relation. The names of data elements comprising
the key of each relation are shown in capitals. The names of the non-prime data elements
are shown in lower case.

Figure 7 shows the four relations with their respective primary key data elements and the
foreign key associations, domain associations, and hierarchical-one associations in which
they participate.

Figure 7 • Parts Model Example: Diagram Showing Associations of the Relations

The contents of the relations are described below, including, for each, its key, its
non-prime data elements (if any) and any associations in which it participates as the
source relation.

Table 6 Parts Model Example: Table of Relations and their Component Data Elements

Relation Data Elements Comprising Relation

PART PART-NO part-name part-price part-qty
-
in-stock

MAJOR-PART MAJOR-PART-NO part-no

MINOR-PART MINOR-PART-NO

COMPONENT MAJOR-PART-NO MINOR-PART-NO assembly-
quantity

PART-NO

MAJOR-PART-NO MINOR-PART-NO

MAJOR-PART-NO

MAJOR-PART

PART

MINOR-PART

COMPONENT

MINOR-PART-NO

 ASG-Manager Products Relational Technology Support: DB2

50

PART is an FD relation. It has:

• The key PART-NO

• The non-prime data elements part-name, part-price, and part-qty-in-stock

• No associations leading from it.

MAJOR-PART and MINOR-PART are both role relations, with:

• The respective keys MAJOR-PART-NO and MINOR-PART-NO

• The non-prime data element part-no, appearing in each

• The domain association leading from each to the target relation PART, via the
domain dependencies from their respective keys, to PART-NO (the key of PART).

COMPONENT is an FD relation. It has:

• A composite primary key consisting of the prime data elements MAJOR-PART-NO
and MINOR-PART-NO

• The non-prime data element assembly-quantity

• A hierarchical-one association leading from it to the target relation MAJOR-PART,
via its prime data element MAJOR-PART-NO, which is also the key of
MAJOR-PART

• A hierarchical-one association leading from it to the target relation MINOR-PART,
via its other prime data element MINOR-PART-NO, which is also the key of
MINOR-PART.

Refer to the ASG-DesignManager User’s Guide for details of the structure of the
relational schema.

You can now generate the DB2 design from the relational schema, by issuing one of these
commands:

• DB2 LIST

• DB2 REPORT

• DB2 PLOT

• DB2 PREVIEW

• DB2 POPULATE.

The DB2 design generated from the relations PART, MAJOR-PART, MINOR-PART,
and COMPONENT contains four tables.

3 DB2 Database Design

51

When a table in the DB2 design is generated from a relation in the relational schema, the
table takes the name and WBDA number of its source relation. In general, all of the data
elements of the relation become the columns of the table, where the key of the relation
becomes the primary key of the table.

However, in the Parts Model example, two relations prove to be exceptions to this rule.
That is, the role relations MAJOR-PART and MINOR-PART both have the non-prime
data element part-no, which does not become a column in either of the corresponding
tables. This is because the set of valid values of each of MAJOR-PART-NO and
MINOR-PART-NO is a subset of the set of valid values of part-no. If part-no were
included, each row of the tables MAJOR-PART and MINOR-PART would contain the
same value in both the primary key column and the non-prime column.

The four tables in the generated DB2 design are shown below. The columns comprising
the primary key of the table are shown in capital letters. The non-key columns of the table
are shown in lower case.

Table 7 Department Model Example: Contents of the Tables in the Generated DB2
Design

Table Name Columns Comprising Table

PART PART-NO part-name part-price part-qty
-
in-stock

MAJOR-PART MAJOR-PART-NO

MINOR-PART MINOR-PART-NO

COMPONENT MAJOR-PART-NO MINOR-PART-NO assembly
-quantity

 ASG-Manager Products Relational Technology Support: DB2

52

Figure 8 represents the generated DB2 design. It displays all four tables with their
respective primary key columns and the foreign key relationships in which they
participate.

Figure 8 • Parts Model Example: Diagram Showing the Relationship of the Tables in the
Generated DB2 Design

The following describes the contents of each table, including its primary key, its
non-prime columns (if any), and any foreign key relationships in which it participates (as
either the parent or the dependent table).

PART is a parent table. It has:

• The primary key PART-NO

• The non-prime columns part-name, part-price, and part-qty-in-stock

• The dependent table MAJOR-PART in which the primary key,
MAJOR-PART-NO, is a foreign key to PART

• The dependent table MINOR-PART in which the primary key, MINOR-PART-NO,
is also a foreign key to PART.

MAJOR-PART and MINOR-PART are both parent tables and dependent tables, with:

• Respective primary keys MAJOR-PART-NO and MINOR-PART-NO

• The dependent table COMPONENT in which the primary key components,
MAJOR-PART-NO and MINOR-PART-NO, are the respective foreign keys to
MAJOR-PART and MINOR-PART

• The parent table PART. The primary keys, MAJOR-PART-NO and
MINOR-PART-NO (of MAJOR-PART and MINOR-PART) are foreign keys in
their respective relationships with the parent table PART.

PART-NO

MAJOR-PART-NO MINOR-PART-NO

MAJOR-PART-NO

MAJOR-PART

PART

MINOR-PART

COMPONENT

MINOR-PART-NO

3 DB2 Database Design

53

COMPONENT is a dependent table. It has:

• A composite primary key with MAJOR-PART-NO and MINOR-PART-NO as the
constituent prime columns

• The non-prime column assembly-quantity

• The parent table MAJOR-PART. In this relationship, the prime column
MAJOR-PART-NO (of COMPONENT) is the foreign key to MAJOR-PART.

• The parent table MINOR-PART. In this relationship, the prime column
MINOR-PART-NO (of COMPONENT) is the foreign key to MINOR-PART.

So far the example has illustrated how a DB2 design is generated in the WBDA. When
you enter the DB2 PREVIEW or DB2 POPULATE command, DB2 dictionary
definitions are generated automatically for the four DB2 tables, with their respective
primary keys and foreign keys.

Once the DB2 definitions are in the dictionary, you may wish to add more clauses to
them. You may also wish to refine some of the generated tables for performance reasons;
for instance, you may decide to split or combine some tables.

The generated tables MAJOR-PART and MINOR-PART both contain only a single
column, MAJOR-PART-NO and MINOR-PART-NO, respectively. You may prefer to
merge both of these tables with the table COMPONENT, so that the table PART would
become the parent of COMPONENT instead of being the parent of MAJOR-PART and
MINOR-PART; each of the columns MAJOR-PART-NO and MINOR-PART-NO in the
table COMPONENT (the columns comprising its composite primary key) would then
become foreign keys of the table PART, as shown in Figure 9:

Figure 9 • Result of Merging the Tables MAJOR-PART and MINOR-PART into the Table
COMPONENT

However, it may be useful to keep either or both of MAJOR-PART and MINOR- PART
as tables in their own right. This would ensure integrity by maintaining valid lists of both
major parts and minor parts.

MAJOR-PART-NO
MINOR-PART-NO

PART-NO

PART

COMPONENT

 ASG-Manager Products Relational Technology Support: DB2

54

Thus, when a new row is inserted into the table COMPONENT, the columns for
MAJOR-PART and MINOR-PART can be checked for valid values of major parts and
minor parts. This can be done either by maintaining the single column tables for
MAJOR-PART and MINOR-PART and letting DB2 ensure the integrity, or by
programming the checks into your applications.

Furthermore, if you expect subsequently to add new attributes or relationships to either of
the entities MAJOR-PART or MINOR-PART, then you should keep the MAJOR-PART
and MINOR-PART tables.

The final decisions about operation and performance are made by the database designer.
You can then complete the physical design of the DB2 database by documenting those
decisions in the relevant DB2-TABLE, DB2-INDEX, and DB2-VIEW dictionary
members.

DB2 Command Output

Output from the DB2 REPORT Command

Introduction
The DB2 REPORT command produces the DB2 Table Report that shows the DB2 tables
generated in the DB2 design. You can report all the tables in the WBDA or a selection of
tables. Tables may be selected by name or WBDA number.

The output includes the total number of tables in the WBDA, details of the contents of
each selected table, a description of each dependency represented by the table, and the
origin of that dependency. For each foreign key relationship in which the table
participates, information about the related parent or dependent table is given.

If you have the optional User Formatted Output facility installed, you can tailor the
format and content of the DB2 Table Report.

3 DB2 Database Design

55

Contents of Tables
For each selected table, the DB2 Table Report shows:

• The table type, that is, PARENT/ROOT, DEPENDENT/PARENT,
DEPENDENT/LEAF, or INDEPENDENT

• The table number

• The table name (if one has been assigned to the corresponding relation in the
relational schema)

• The columns comprising the primary key of the table

• The non-prime columns present in the table (if any); that is, each column in the
table which does not form any part of the key.

Two report lines are output for each dependency represented by the table. The first output
line shows:

• Its absolute dependency number in the WBDA (ABS REL column)

• The data elements comprising its left-hand side

• The data elements comprising its right-hand side

• The dependency type: functional (FD), multivalued (MVD), or domain (DD).

The second output line shows the origin of the dependency:

• Either generated by the MERGE command from one or more data-views; if so, the
report includes the name and type (USERVIEW or ENTITY) of each data-view,
and the relative number of the dependency in that data-view

• Or it was created during MERGE command processing as an implied FD.

Refer to the ASG-DesignManager User’s Guide for details of dependencies and of
generating implied FDs from GROUP data elements.

Foreign Key Relationships
For each selected table in the DB2 design which participates in foreign key relationships,
the DB2 Table Report gives additional information about each of its related parent or
dependent tables.

In the output for a selected table, the two possible types of foreign key relationship are
indicated by the following keywords:

• FOREIGN-KEY is used to indicate a direct foreign key relationship, derived either
from a direct foreign key association or from a direct hierarchical-one association in
the corresponding relational schema

• DOMAIN indicates a domain type of relationship, derived from a domain
association.

 ASG-Manager Products Relational Technology Support: DB2

56

The significance of the relationship types is explained below, both for a related parent
table and for a related dependent table. (In each case, T1 is the selected table, T2 is its
related parent table, and T3 is its related dependent table.)

For each related parent table:

• FOREIGN-KEY indicates a direct foreign key relationship between T1 and T2,
where the primary key of T2 is contained as a set of columns in T1 (that is, as a
foreign key in T1 to the parent table T2), and there is no intermediate table that is
both a parent of T1 and a dependent of T2 in direct foreign key relationships

• DOMAIN indicates a domain relationship between T1 and T2, due to a domain
dependency in the WBDA holding from the primary key of T1 to the primary key
of T2.

For each related dependent table:

• FOREIGN-KEY indicates a direct foreign key relationship between T1 and T3,
where the primary key of T1 is contained as a set of columns in T3 (that is, as a
foreign key to T1 in the dependent table T3), and there is no intermediate table that
is both a parent of T3 and a dependent of T1 in direct foreign key relationships

• DOMAIN indicates a domain relationship between T1 and T3, due to a domain
dependency in the WBDA holding from the primary key of T3 to the primary key
of T1.

The DB2 Table Report contains the following information for each parent table of a table
selected for reporting:

• The parent table number

• The parent table name (if one has been assigned)

• The type of relationship (a direct or domain type of foreign key relationship)

• The columns comprising the primary key of the parent table

• The columns of the selected table comprising the foreign key to the parent table,
where:

— In a direct foreign key relationship, these columns are identical to those
comprising the primary key of the parent table

— In a domain relationship, they are different.

Each foreign key column in the selected table is shown paired with its corresponding
primary key column in the parent table.

3 DB2 Database Design

57

The DB2 Table Report contains the following information for each dependent table of a
table selected for reporting:

• The dependent table number

• The dependent table name (if one has been assigned)

• The type of relationship, that is, a direct or domain type of foreign key relationship

• The columns comprising the primary key of the dependent table

• The columns of the dependent table comprising the foreign key to the selected
table, where:

— In a direct foreign key relationship, these columns are identical to the columns
comprising the primary key of the selected table

— in a domain relationship, they are different.

Each foreign key column in the dependent table is shown paired with its corresponding
primary key column in the selected table.

Example
In this example, a DB2 Table Report is produced for the following tables, which have
been generated in the DB2 design in the WBDA. The names of the columns comprising
the primary key of each table are shown in capital letters. The names of non-prime
columns are shown in lower case.

Table 8 Tables in the DB2 Design in the WBDA

Table No. and Name Columns Comprising Table

1 DEPARTMENT-
MEMBER

DEPARTMENT-NO EMPLOYEE-NO

2 OFFICE-
DEPARTMENT

OFFICE-LOCATION DEPARTMENT-NO

3 DEPARTMENT DEPARTMENT-NO department-name manager-no

4 EMPLOYEE EMPLOYEE-NO employee-name

5 OFFICE OFFICE-LOCATION office-name

6 MANAGER MANAGER-NO

 ASG-Manager Products Relational Technology Support: DB2

58

The tables in the DB2 Table Report (Figure 10) are described in order of table number, as
they appear in the list above.

Figure 10 • Example of DB2 REPORT Output

* *
* DB2 TABLE REPORT *
* *
* TOTAL NUMBER OF TABLES ...6*
* *

==================LEAF/DEPENDENT==================
1 DEPARTMENT-MEMBER
==
PRIMARY KEYDATA ELEMENTS
DEPARTMENT-NO
EMPLOYEE-NO

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

5 DEPARTMENT-NO—MVD->>EMPLOYEE-NO

3 ENTITY DEPARTMENT-ENT

Parent Table Current Table Foreign Key

NAME

TYPE

P-KEY

3 DEPARTMENT

FOREIGN-KEY

DEPARTMENT-NO DEPARTMENT-NO

NAME

TYPE

P-KEY

4 EMPLOYEE

FOREIGN-KEY

EMPLOYEE-NO EMPLOYEE-NO

3 DB2 Database Design

59

==================LEAF/DEPENDENT==================
2 OFFICE-DEPARTMENT
==
PRIMARY KEYDATA ELEMENTS
OFFICE-LOCATION
DEPARTMENT-NO

ABS LEFT-HAND-SIDE TYPE
RIGHT-HAND-SIDE

REL DATA-VIEW

7 OFFICE-LOCATION—MVD-››DEPARTMENT-NO

2 ENTITY OFFICE-ENT

Parent Table Current Table Foreign Key

NAME

TYPE

P-KEY

3 DEPARTMENT

FOREIGN-KEY

DEPARTMENT-NO DEPARTMENT-NO

NAME

TYPE

P-KEY

5 OFFICE

FOREIGN-KEY

OFFICE-LOCATION OFFICE-LOCATION

 ASG-Manager Products Relational Technology Support: DB2

60

==================PARENT/DEPENDENT==================
3 DEPARTMENT
==
PRIMARY KEYDATA ELEMENTS
DEPARTMENT-NO

DEPARTMENT-NAME
MANAGER-NO

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

3 DEPARTMENT-NO—FD-->DEPARTMENT-NAME

1 ENTITY DEPARTMENT-ENT

4 DEPARTMENT-NO—FD-->MANAGER-NO

2 ENTITY DEPARTMENT-ENT

Parent Table Current Table Foreign Key

NAME

TYPE

P-KEY

6 MANAGER

FOREIGN-KEY

MANAGER-NO MANAGER-NO

Dependent Table Current Table Foreign Key

NAME

TYPE

P-KEY

F-KEY

1 DEPARTMENT-MEMBER

FOREIGN-KEY

DEPARTMENT-NO

EMPLOYEE-NO

DEPARTMENT-NO DEPARTMENT-NO

NAME

TYPE

P-KEY

F-KEY

2 OFFICE-DEPARTMENT

FOREIGN-KEY

OFFICE-LOCATION

DEPARTMENT-NO

DEPARTMENT-NO DEPARTMENT-NO

3 DB2 Database Design

61

==================ROOT/PARENT==================
4 EMPLOYEE
===
PRIMARY KEYDATA ELEMENTS
EMPLOYEE-NO

EMPLOYEE-NAME

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

1 EMPLOYEE-NO—FD-->EMPLOYEE-NAME

1 ENTITY EMPLOYEE-ENT

Parent Table Current Table Primary Key

NAME

TYPE

P-KEY

F-KEY

1 DEPARTMENT-MEMBER

FOREIGN-KEY

DEPARTMENT-NO

EMPLOYEE-NO

EMPLOYEE-NO EMPLOYEE-NO

NAME

TYPE

P-KEY

F-KEY

6 MANAGER

DOMAIN

MANAGER-NO

MANAGER-NO EMPLOYEE-NO

 ASG-Manager Products Relational Technology Support: DB2

62

==================ROOT/PARENT==================
5 OFFICE
===
PRIMARY KEYDATA ELEMENTS
OFFICE-LOCATION

OFFICE-NAME

==================PARENT/DEPENDENT==================
6 MANAGER
==
PRIMARY KEYDATA ELEMENTS
MANAGER-NO

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

6 OFFICE-LOCATION—FD-->OFFICE-NAME

1 ENTITY OFFICE-ENT

Dependent Table Current Table Foreign Key

NAME

TYPE

P-KEY

F-KEY

2 OFFICE-DEPARTMENT

FOREIGN-KEY

OFFICE-LOCATION

DEPARTMENT-NO

OFFICE-LOCATION OFFICE-LOCATION

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

2 MANAGER-NO===DD==>EMPLOYEE-NO

2 ENTITY EMPLOYEE-ENT

Parent Table Current Table Foreign Key

NAME

TYPE

P-KEY

4 EMPLOYEE

DOMAIN

EMPLOYEE-NO MANAGER-NO

3 DB2 Database Design

63

* *
* END OF SQL REPORT*
* *

Output from the DB2 PLOT CLUSTER Command

Introduction
The output of the DB2 PLOT CLUSTER command, called the DB2 Cluster plot,
provides you with detailed graphical displays for selected tables in the DB2 design in the
WBDA.

The output shows where relationships exist between tables, the type of the relationships,
and the primary and foreign keys used.

For each selected table, a diagram is produced in cluster form, showing the table’s foreign
key relationships (if any) with the other tables of the DB2 design. You can output cluster
diagrams for all the tables in the WBDA or for tables selected by name or WBDA
number.

After all the cluster diagrams have been displayed, the DB2 Design Relationship matrix
is output; this is a two-dimensional table which summarizes all of the foreign key
relationships between the tables in the WBDA. The DB2 Design Relationship matrix
always shows all the tables in the WBDA.

If you have the optional User Formatted Output facility installed, you can specify the
name of an appropriate FORMAT member of the dictionary in the command in order to
tailor the format and content of the DB2 Cluster plot.

Dependent Table Current Table Primary Key

NAME

TYPE

P-KEY

F-KEY

3 EMPLOYEE

FOREIGN-KEY

DEPARTMENT-NO

MANAGER-NO MANAGER-NO

 ASG-Manager Products Relational Technology Support: DB2

64

Format of the Cluster Diagram
In each cluster diagram displayed in the DB2 Cluster plot, the table selected for output is
depicted by a larger box and the related tables by smaller boxes. Foreign key
relationships between tables are represented by connecting arrows. The DB2 convention
is followed, in which the arrow points from the parent table to the dependent table.

The type of foreign key relationship existing between the selected table (T1) and each
related table (T2) is indicated by the type of arrow used to connect them, as explained
below.

Direct foreign key relationships are indicated either by:

T1 T2

where the selected table is the parent table in the relationship; that is, the primary key of
T1 is contained as a set of columns in T2, or by:

T1 T2

where the selected table is the dependent table in the relationship; that is, the primary key
of T2 is contained as a set of columns in T1.

If the selected table is related both as a parent and as a dependent table in two different
relationships with the same table, then the bidirectional arrow is used to represent the
relationship:

T1 T2

A domain relationship is indicated either by:

T1 =====> T2

where the selected table is the parent table in the relationship; that is, a domain
relationship exists between T1 and T2, due to a domain dependency in the WBDA
holding from the primary key of T2 to the primary key of T1, or by:

T1 <===== T2

where the selected table is the dependent table in the relationship; that is, a domain
relationship exists between T1 and T2, due to a domain dependency in the WBDA
holding from the primary key of T1 to the primary key of T2.

In a cluster the tables are arranged vertically. In accordance with ASG-DesignManager
convention, related parent tables appear above the selected table and related dependent
tables appear below it. The only exception to this convention occurs when a foreign key
relationship holds in both directions between the selected table and a related table, in
which case the related table appears below the selected table.

3 DB2 Database Design

65

The Information in the Cluster Diagram
Each cluster diagram of the DB2 Cluster plot displays information about the selected
table and about each of its related tables.

The following information is given for the selected table:

• The table type; that is, ROOT/PARENT, PARENT/DEPENDENT,
LEAF/DEPENDENT, or INDEPENDENT

• The table’s WBDA number

• The table name (the same name as that of its corresponding WBDA relation, if that
relation has previously been named via the NAME command)

• The names of the columns comprising the primary key of the table

• The name of each non-prime column in the table, that is, each column which does
not form part of the key.

The following information is given for each related table:

• The table WBDA number

• The table name (if its corresponding relation has been named using the NAME
command)

• The names of the columns comprising the primary key of the table

• The relationship that holds between the selected table and the related table
(represented by a connecting arrow).

Refer to "Format of the Cluster Diagram" on page 64 for information about directional
arrows. Refer to "Introduction to Examples" on page 37 for details of the case study on
which this example is based.

Example of the Output
In Table 9, the names of columns which form the primary key of each table are shown in
capital letters, and the names of non-prime columns are shown in lower case.

Refer to "Introduction to Examples" on page 37 for details of the case study on which this
example is based.

Table 9 Example Output: Tables and Columns

Table No. and Name Columns Comprising Table

1 DEPARTMENT-
MEMBER

DEPARTMENT-NO EMPLOYEE-NO

2 OFFICE-
DEPARTMENT

OFFICE-
LOCATION

DEPARTMENT-NO

3 DEPARTMENT DEPARTMENT-NO department-name manager-no

 ASG-Manager Products Relational Technology Support: DB2

66

Taking each of these tables in turn, different clusters would be displayed in the DB2
Cluster plot.

The cluster in Figure 11 displays when the table DEPARTMENT-MEMBER is selected:

Figure 11 • Displayed Cluster in the DEPARTMENT-MEMBER Table

4 EMPLOYEE EMPLOYEE-NO employee-name

5 OFFICE OFFICE-LOCATIO
N

office-name

6 MANAGER MANAGER-NO

Table 9 Example Output: Tables and Columns

Table No. and Name Columns Comprising Table

3 DEPARTMENT

KEY DEPARTMENT-NO

LEAF/DEPENDENT
1 DEPENDENT-MEMBER

KEY

DEPARTMENT-NO
EMPLOYEE-NO

COLUMNS

4 EMPLOYEE

KEY EMPLOYEE-NO

3 DB2 Database Design

67

The cluster in Figure 12 displays when the table OFFICE-DEPARTMENT is selected:

Figure 12 • Displayed Cluster in the OFFICE-DEPARTMENT table

The cluster in Figure 13 displays when the table DEPARTMENT is selected:

Figure 13 • Displayed Cluster in the DEPARTMENT Table

LEAF/DEPENDENT

3 DEPARTMENT

KEY DEPARTMENT-NO

5 OFFICE

KEY OFFICE-LOCATION

OFFICE-LOCATION
DEPARTMENT-NO

KEY COLUMNS

2 OFFICE-DEPARTMENT

PARENT/DEPENDENT

6 MANAGER

KEY MANAGER-NO

DEPARTMENT-NO

KEY COLUMNS

3 DEPARTMENT

DEPARTMENT-NAME
MANAGER-NO

1 DEPARTMENT-MEMBER

KEY DEPARTMENT-NO

2 OFFICE-DEPARTMENT

 EMPLOYEE-NO

KEY OFFICE-LOCATION
 DEPARTMENT-NO

 ASG-Manager Products Relational Technology Support: DB2

68

The cluster in Figure 14 displays when the table EMPLOYEE is selected:

Figure 14 • Displayed Cluster in the EMPLOYEE Table

The cluster in Figure 15 displays when the table OFFICE is selected:

Figure 15 • Displayed Cluster in the OFFICE Table

ROOT/PARENT

1 DEPARTMENT-MEMBER

KEY DEPARTMENT-NO
 EMPLOYEE-NO

6 MANAGER

KEY MANAGER-NO

4 EMPLOYEE

KEY

EMPLOYEE-NO EMPLOYEE-NAME

COLUMNS

ROOT/PARENT

2 OFFICE-DEPARTMENT

KEY OFFICE-LOCATION
 DEPARTMENT-NO

5 OFFICE

KEY

OFFICE-LOCATION

COLUMNS

OFFICE-NAME

3 DB2 Database Design

69

The cluster in Figure 16 displays when the table MANAGER is selected:

Figure 16 • Displayed Cluster in the MANAGER Table

The DB2 Design Relationship Matrix
In the DB2 Cluster plot, the DB2 Design Relationship matrix is output after all the
clusters for the selected tables have been displayed.

Note:
The matrix always shows all the tables in the WBDA, regardless of any selections
specified in the DB2 PLOT CLUSTER command.

The matrix is a table of entries summarizing all the foreign key relationships between the
tables in the WBDA. It can be used as a quick reference to determine the existence of a
foreign key relationship and its type.

The matrix is an n-by-n square array, where n is the total number of tables in the WBDA.
Row 1 and column 1 correspond to table 1, row 2 and column 2 to table 2, and so on. The
rows of the matrix represent the parent tables, and the columns represent the dependent
tables.

PARENT/DEPENDENT

KEY COLUMNS

4 EMPLOYEE

KEY EMPLOYEE-NO

6 MANAGER

MANAGER-NO

3 DEPARTMENT

KEY DEPARTMENT-NO

 ASG-Manager Products Relational Technology Support: DB2

70

The matrix shown in Figure 17 is the one produced after the cluster diagrams discussed
earlier.

Figure 17 • Matrix Produced by the DB2 PLOT Command

By reading across a row, you can identify the relationships that hold from a particular
parent table to its dependent tables.

By reading down a column, you can identify the relationships that hold to a dependent
table from each of its parent tables. A relationship between two tables is indicated by a
character at the intersection of the row and column representing those tables. The
character used indicates the type of relationship that exists:

• 1 indicates a direct foreign key type of relationship from the row table (the parent
table) to the column table (the dependent table)

• D indicates a domain type or foreign key relationship from the row table (the parent
table) to the column table (the dependent table). This means that a domain
dependency exists in the WBDA holding from the key of the column table to the
key of the row table.

For example, in the matrix above you can see that DEPARTMENT is the parent table of
DEPARTMENT-MEMBER and OFFICE-DEPARTMENT, and that the relationship is
the direct foreign key type.

If no relationship exists between one table and another, then the corresponding matrix
intersection is left blank.

Refer to "Introduction to Examples" on page 37 for details of the case study on which this
example is based.

1 2 3 4 5 6

DEPARTMENT-MEMBER 1

: : : : :

OFFICE-DEPARTMENT 2

: : : : :

DEPARTMENT 3 1 1

: : : : :

EMPLOYEE 4 1 D

: : : : :

OFFICE 5 1

: : : : :

MANAGER 6 1

3 DB2 Database Design

71

Output from the DB2 PLOT REFERENTIAL-STRUCTURES Command

Introduction
The output of the DB2 PLOT REFERENTIAL-STRUCTURES command, called the
DB2 Referential Structures plot, provides you with a diagrammatic overview of the
referential structures comprising the DB2 design in the WBDA. They are displayed
without details of the DB2 table content.

The DB2 Referential Structures plot is complementary to the DB2 Cluster plot, which,
for each DB2 table in the DB2 design, provides details of its content and its relationships
with other DB2 tables. The DB2 Referential Structures plot gives you an
easy-to-understand overall picture of one or more referential structures and the tables
contained in each.

The relationships displayed between tables in the DB2 Referential Structures plot include
direct foreign key relationships and domain relationships.

The tables displayed in the DB2 Referential Structures plot can be of any of these types:

• PARENT/ROOT

• DEPENDENT/PARENT

• DEPENDENT/LEAF

• INDEPENDENT.

In a DB2 Referential Structures plot, the tables are displayed as boxes and the
relationships as connecting lines, where these lines appear as unidirectional arrows.
However, in a plot for a large and complex DB2 design, you would find that the number
of arrows that cross one another would, in general, create a mass of confusing detail.

In the DB2 Referential Structures plot, this is avoided completely by the tactic of
displaying the boxes and lines in the form of an equivalent hierarchical (tree) structure.
The composition of the (relational) DB2 design is not affected, only the way it is
represented. The great advantage of the hierarchical display is that connecting arrows will
never cross, no matter how large and complex the DB2 design. This makes it much easier
for you to perceive its overall structure.

The tree structure starts with a single box, the seed, and branches out hierarchically to the
right in columnar levels. Successive levels consist of vertically aligned child boxes, each
connected to a box at the preceding level. The first level consists of only the seed. The
second level contains children of the seed, the third level contains children of the level
two boxes, and so on. A box that has no child at the next level is called a leaf. The
children of a non-leaf box plus its childrens’ children, and so on, are called its
descendants.

 ASG-Manager Products Relational Technology Support: DB2

72

In addition to the representation of the DB2 design as an equivalent hierarchical structure,
a further simplifying feature has been incorporated in the DB2 Referential Structures plot
which serves to reduce the number of boxes appearing in the diagram. In the tree
structure, no table is represented more than once by a box. Every other occurrence of the
table and any sub-branch of lower level tables emanating from it in the tree (that is, its
descendants) is represented in the plot by a single pointer instead of duplicating the entire
sub-branch for the occurrence.

In a DB2 Referential Structures plot, boxes are displayed with dashed outlines and
pointers with dotted outlines. There are a number of command options available to you
for the DB2 Referential Structures plot which can further simplify the display. You can
show either:

• All the tables of the DB2 design, or

• An individual referential structure based on a specified seed.

You can also specify the direction of (and thus limit) the relationships to be displayed,
that is parent or dependent relationships. These options enable you to focus attention on
desired subsets of the design and on desired types of access through the design.

If you have the optional User Formatted Output facility installed, you can also specify a
meaningful title for the plot by entering it as a string in the ASG-ControlManager
command, SET FORMAT-TITLE, before you issue the DB2 PLOT command.

Layout
In summary, in the DB2 Referential Structures plot, the tables in the DB2 design are
represented by boxes and pointers; relationships between the tables are represented by
connecting lines. In die output medium, boxes are displayed with dashed outlines,
pointers with dotted outlines, and connecting lines appear as unidirectional arrows.

Table numbers are displayed on the left lower boundary of the corresponding box or
pointer. If a table is named, the interior of a box or pointer contains the table name;
otherwise, it contains text formed from the table’s primary key.

Text formed from a key consists of up to three lines. Each line of text is formed from a
data element contained in the key. If the key contains more than one data element, the
lines are formed in alphanumeric order of data element name. Each line is limited to a
maximum of eleven characters, comprising either the data element name, or the first 11
characters of the name.

As a consequence, it is possible for the same text to be formed from the keys of different
tables. However, the text displayed is intended only as an aid to identification. Positive
identification of the table being represented is given by the table number which appears
on the left lower boundary of each box or pointer displayed.

3 DB2 Database Design

73

Table 10 shows examples of text formed from table keys:

Boxes and their connecting lines are laid out on the output medium in logical lines. Each
logical line occupies six physical print lines and contains one or more boxes and at most
one pointer (perhaps none). Logical lines are numbered consecutively, beginning with
one. These numbers are very useful as they are used in pointers and in the Numeric and
Alphabetic directories that follow the plot to help you locate any table displayed in the
plot.

The boxes and pointers are laid out from left to right on the logical lines in order of the
hierarchical levels they form. The highest level is that of the seed, which is placed in the
upper left-hand corner of the plot. Each lower level box (or pointer) appears to the right
of the box (at the next higher level) to which it is connected as a child. All the children of
a given box are shown at the next level, one below the other, each connected to the given
box.

Table 10 Examples of Text Formatted from Table Keys

Key Text Formed

EMPLOYEE-NO EMPLOYEE-NO (no truncation)

EMPLOYEE-NAME EMPLOYEE-NA (first 11 characters)

DEPARTMENT-NO, DEPARTMENT- (first 11 characters)

EMPLOYEE-NAME, EMPLOYEE-NA (first 11 characters)

OFFICE-NO OFFICE-NO (no truncation)

DEPARTMENT-NO DEPARTMENT- (first 11 characters)

EMPLOYEE-NAME, EMPLOYEE-NA (first 11 characters)

OFFICE-NO OFFICE-NO (no truncation)

PROJECT-NO (omitted)

 ASG-Manager Products Relational Technology Support: DB2

74

The seed, which is the only level 1 box in the hierarchy, appears as the only box on
logical line number 1. The level 2 boxes consist of the children of the seed, that is all the
tables which have direct relationships with the seed. The first of these is placed on logical
line 2 at level 2. The level 3 boxes and pointers are the children of the level 2 boxes. If the
first level 2 box has any children, the first of these is placed on logical line 2 to the right
of (and connected with) the level 2 box. The placement of lower level boxes and pointers
on the logical lines follows the same pattern, with the children of a box appearing to the
right of the box. A box that has no children is called a leaf. A simple example of a DB2
Referential Structures plot appears in Figure 18:

Figure 18 • DB2 Referential Structures Plot

In Figure 18, foreign key relationships are depicted from table T1 (the seed for the plot)
to table T2 and from table T2 to each of tables T3 and T4.

Use of Pointers
In the DB2 Referential Structures plot, a table is represented by a pointer instead of a box
if it has already been displayed as a box elsewhere in the plot, either at a higher level on
any logical line or at the same level but on a preceding logical line. The purpose is to
display each table only once as a box along with any lower level descendants the box may
have. Thereafter, the table is displayed as a pointer (without lower level descendants) to
the logical line in which it appeared as a box. The number of this logical line always
appears on the right upper boundary of the pointer. A table may be displayed as a pointer
several times in the plot, but it cannot be displayed more than once as a box.

Logical Line
Number

1

2

3

Level 1

Level 2 Level 3

T1

T4

T3T2

<1>

<4>

<2> <3>

3 DB2 Database Design

75

In fact, a pointer being displayed in a DB2 Referential Structures plot can be quite
significant. The appearance of such a pointer serves to highlight one of two important
situations in a DB2 design. A pointer signifies that either the table is in a cycle or that the
table participates in more than one foreign key relationship; a quick glance at the output
will indicate which.

Consider the sample plot appearing in Figure 19:

Figure 19 • Pointers Used in DB2 Referential Structures Plot

Logical Line

1

2

3

Level 1

Level 2 Level 3

4

5 TAB-E

TAB-A

TAB-C

TAB-C

TAB-DTAB-B

Level 4

(4)

TAB-D
(2)

TAB-F

<4>

<5> <6>

<3>

<4>

<3><2>

<1>

 ASG-Manager Products Relational Technology Support: DB2

76

In Figure 19, note that:

• Table TAB-C appears as a pointer in level 3 because it was already displayed as a
box in level 2. This pointer highlights the fact that TAB-C is a dependent table of
both TAB-A and TAB-B.

• Table TAB-D appeal’s as a pointer in level 3 on logical line 4 because it appeared
as a box in the same level on logical line 2. This pointer highlights the fact that TA
B-D is a dependent table of both TA B-B and TAB-C.

• No pointers are required for tables TAB-E and TAB-F because they are descendants
of table TA B-C and their repetition is indicated by the pointer for table TAB-C.

There is one other circumstance requiring the use of a pointer. This occurs when there is
not enough room on a logical line for all the tables that should be displayed on it. That is,
the last box for which there is room has one or more children at the next level (it is not a
leaf). In this case, the box is replaced by a pointer and the table it represents is placed in a
continuation seed list.

Each continuation seed is then processed along with its descendants (that is, its children,
its children’s children, and so on), if any, further down in the diagram just as if it were the
seed for a new Referential Structure plot. That is, it will appear as a box in the seed
position at the top of a new page. Pictorially, it will appear as the seed of anew tree.
Structurally, however, it will be a continuation of the incomplete branch. In this case, the
pointer is called a continuation pointer.

A plot which begins with a continuation seed is called a continuation plot. It is a
continuation of the main plot, which begins with the primary seed. Continuation plots
appear after the main plot (or after any additional plots). Logical line numbers are
assigned consecutively throughout each plot and continue consecutively from one plot to
another.

In contrast with pointers, there is only one circumstance in which a box will have an entry
on its right upper boundary, that is, when the box is a continuation seed. In this case, the
entry is the number of the logical line from which it is continued.

Additional Plots
After the main plot and any continuation plots have been displayed in the DB2
Referential Structures plot (and if the ALL keyword has been specified in the DB2 PLOT
command), ASG-DesignManager looks for any additional seeds that may be required to
ensure that every table in the DB2 design is displayed. A plot which begins with an
additional seed is called an additional plot. (The main plot begins with the primary seed
and each continuation plot with a continuation seed.)

3 DB2 Database Design

77

An additional plot is not a continuation of the main plot. It represents a separate
hierarchy. Separate hierarchies emanating from different seed tables nevertheless can
belong to the same referential structure provided that all are linked via tables shared in
common. Each such link would be represented by a pointer from one hierarchical plot to
a logical line in another hierarchical plot.

Separate hierarchical plots belonging to the same referential structure can appear in the
display only when the keywords ALL and either PARENTS or DEPENDENTS are
specified in the command. If, on the other hand, ALL is specified but neither PARENTS
nor DEPENDENTS (the default selection, indicating that both parent and dependent
foreign key relationships are to be plotted), then every additional plot will represent not
only a separate hierarchy but also a complete referential structure.

Indeed, not specifying PARENTS or DEPENDENTS in the command (no matter which
of the ALL or SEED options has also been selected) is the only way to ensure the display
of hierarchies that represent complete referential structures.

The seed for an additional plot appears in the seed position at the top of a new page. The
logical line number of the seed follows consecutively from the last logical line of the
preceding plot.

You can always distinguish between a continuation seed and an additional seed because
the former has a logical line number entered on its right upper boundary whereas the
latter does not.

Note:
An additional plot may itself be followed by one or more continuation plots.

It is possible in this process to produce an additional plot which takes the form of a
seed-only hierarchy. An additional seed may, for instance, be a leaf with no children. In
this case, the additional plot consists of only a single box.

In particular, after all the tables in all the referential structures have been processed,
ASG-DesignManager will produce a seed-only hierarchy for each independent table, if
any, in the DB2 design.

Use of Directories
At the end of the DB2 Referential Structure plot, two directories are given for referencing
the tables displayed, the Numeric directory and the Alphabetic directory. The Numeric
directory is ordered by table number and shows, for each table displayed:

• In the first column, the table number and its name (if a name has been assigned)

• In the second column, the logical line number on which it is displayed as a box

• In the third column, every logical line number on which it is displayed as a pointer,
indicating each additional instance in which (he table participates in a foreign key
relationship.

 ASG-Manager Products Relational Technology Support: DB2

78

The Alphabetic directory contains exactly the same information, but only for tables
which have been named. They are listed in alphanumeric order of table name.

Figure 20 contains the same sample DB2 Referential Structure plot shown earlier in the
discussion of the use of pointers. In addition, the corresponding Numeric and Alphabetic
directories are also given.

Figure 20 • Pointers Used in DB2 Referential Structures Plot

Logical Line

1

2

3

Level 1

Level 2 Level 3

4

5
TAB-E

TAB-A

TAB-C

TAB-C

TAB-D
TAB-B

Level 4

(4)

TAB-D

(2)

TAB-F

<4>

<5> <6>

<3>

<4>

<3><2>

<1>

3 DB2 Database Design

79

Table 11 is the numeric directory for Figure 20.

Table 12 is the alphabetic directory for Figure 20 on page 78

At a glance, you can see in the directories that tables TAB-C and TAB-D have entries in
the third column, indicating that they both appear in more than one foreign key
relationship. The directories provide another way to distinguish between a continuation
seed and an additional seed. A continuation seed will have a single logical line number
entered in the third column of the directory indicating the line from which the plot has
been continued, whereas an additional seed will have no entry in the third column.

Table 11 Numeric Directory

TABLE LINE OTHER OCCURRENCES

1 TAB-A 1

2 TAB-B 2

3 TAB-C 2 4

4 TAB-D 4 3

5 TAB-E 5

6 TAB-F 5

Table 12 Alphabetic Directory

TABLE LINE OTHER OCCURRENCES

1 TAB-A 1

2 TAB-B 2

3 TAB-C 4 3

4 TAB-D 2 4

5 TAB-E 5

6 TAB-F 5

 ASG-Manager Products Relational Technology Support: DB2

80

Example
Figure 21 is an example of the output from the DB2 PLOT
REFERENTIAL-STRUCTURES command for the Department model, where table
number 1, that is table DEPARTMENT-MEMBER, is specified as the seed with the
default taken that all relationships are to be displayed.

Figure 21 • DB2 PLOT REFERENTIAL-STRUCTURES Output for Department Model Example

* D B 2 R E F E R E N T I A L - S T R U C T U R E S P L O T*

E N D O F D B 2 R E F E R E N T I A L - S T R U C T U R E S

(4)

<5>

1

2

3

4

DEPARTMENT-

EMPLOYEE

MANAGER

DEPARTMENT

MANAGER

<4> <6>

<3>

<1>

MEMBER

<2>

<6> <4>

EMPLOYEE

(3)

OFFICE-
DEPARTMENT

OFFICE

3 DB2 Database Design

81

Table 13 is the numeric directory for Figure 21.

Table 14 is the alphabetic directory for Figure 21 on page 80.

Output from the DB2 LIST TABLES Command

Introduction
The DB2 LIST TABLES command produces a list of all or some of the DB2 tables in the
WBDA. For each DB2 table selected, the list includes the WBDA number of the table, its
primary key, its name (if one has been assigned) and its type.

Selection of tables in the list is based on table type or a combination of table types.
Selected tables can be listed in order of table name or number.

Table 13 Numeric Directory

TABLE LINE OTHER OCCURRENCES

1 DEPARTMENT-MEMBE
R

1

2 OFFICE-DEPARTMENT 2

3 DEPARTMENT 2

4 EMPLOYEE 4 3

5 OFFICE 2

6 MANAGER 3 4

Table 14 Alphabetic Directory

TABLE LINE OTHER OCCURRENCES

3 DEPARTMENT 2

1 DEPARTMENT-MEMBE
R

1

4 EMPLOYEE 4 3

6 MANAGER 3 4

5 OFFICE 2

2 OFFICE-DEPARTMENT 2

 ASG-Manager Products Relational Technology Support: DB2

82

Description
The output produced by the DB2 LIST TABLES command shows, for each DB2 table
selected:

• The number of the table in the WBDA

• The columns comprising the primary key of the table

• The table name, if one has been assigned

• The type of table, that is, one of the following:

— PARENT/ROOT

— DEPENDENT/PARENT

— DEPENDENT/LEAF

— INDEPENDENT,

where the above types are defined as indicated in the following paragraphs.

In DB2, a foreign key relationship is directed from (the primary key of) a parent table to
(a foreign key in) a dependent table. If the relationship is derived from a domain
association (in the corresponding relational schema), then the foreign key is the primary
key of the dependent table. Otherwise, the foreign key is identical to the primary key of
the parent table and appears in the dependent table as a non-key set of columns (which
can include some but not all of the dependent table’s primary key).

A PARENT/ROOT table is a table which participates in one or more foreign key
relationships as a parent table only. A DEPENDENT/PARENT table is a table which
participates in one or more foreign key relationships as a parent table and which also
participates in one or more foreign key relationships as a dependent table.

A DEPENDENT/LEAF table is a table which participates in one or more foreign key
relationships as a dependent table only. An INDEPENDENT table is a table which
participates in no foreign key relationships at all, that is, it is neither a parent nor a
dependent table.

The output of this command can help you to decide which tables to specify as seeds in the
DB2 PLOT REFERENTIAL-STRUCTURES command.

3 DB2 Database Design

83

Example
The following is an example of output from the DB2 LIST TABLES command for the
Department model:

Output from the DB2 LIST CYCLES Command

Introduction
The DB2 LIST CYCLES command produces, for every cycle present in the DB2 design
generated in the WBDA, a list of the tables appearing in the cycle. Tables in each cycle
can be listed in alphanumeric order or in cyclic order, beginning with the table whose
WBDA number is the lowest.

Description

For each cycle found in the DB2 design present in the WBDA, the DB2 LIST CYCLES
command produces a list of the tables appearing in the cycle, showing for each table:

• The table WBDA number

• The primary key of the table

• The name of the table, if one has been assigned

• The keyword MULTIPLE, if the table appears in more than one cycle.

Table 15 List of DB2 Tables Held in WBDA

Number Key Name and Type

1 EMPLOYEE-NO
DEPARTMENT-NO

DEPARTMENT-MEMB
ER

DEPENDENT/LEAF

2 DEPARTMENT-NO
OFFICE-LOCATION

OFFICE-DEPARTMENT DEPENDENT/LEAF

3 DEPARTMENT-NO DEPARTMENT DEPENDENT/PARENT

4 EMPLOYEE-NO EMPLOYEE PARENT/ROOT

5 OFFICE-LOCATION OFFICE PARENT/ROOT

6 MANAGER-NO MANAGER DEPENDENT/PARENT

 ASG-Manager Products Relational Technology Support: DB2

84

Example
In Figure 22, an example is pictured of a cycle with its path of tables and connecting
relationships:

Figure 22 • Example Cycle

The output in Table 10 would be produced by the DB2 LIST CYCLES command (in this
case, the result is the same whether or not ALPHABETICALLY is specified in the
command because cyclic order, beginning with the lowest numbered table, and
alphanumeric order happen to be the same):

Table 16 List of DB2 Cycles Held in WBDA

CYCLE

NUMBER KEY NAME

1 COURSE-NO COURSE

2 LANGUAGE-NO LANGUAGE

3 STUDENT-NO STUDENT

CYCLE CONTAINS 3 DB2 TABLES

CYCLE

•

•

•

LIST CONTAINS nn DB2 CYCLES

COURSE

STUDENTLANGUAGE

3 DB2 Database Design

85

Generated DB2 Member Definitions
This section shows the member definitions generated by the DB2 POPULATE and DB2
PREVIEW commands. Each generated DB2 member contains enough information in its
clauses for you to use it subsequently to produce SQL CREATE TABLE, INDEX, or
VIEW statements. When creating the DB2 objects, DB2 will assign default values to all
the remaining clauses. Definitions for the following member types are generated from the
tables in the WBDA:

• DB2-TABLE

• DB2-INDEX

• DB2-VIEW

• SYSTEM.

Refer to Chapter 9, "Repository Member Types," on page 331 for the complete syntax of
all DB2 member types.

Generated DB2-TABLE Member

Generated DB2-TABLE Definition
What follows is the subset generated by the DB2 PREVIEW or DB2 POPULATE
command of the complete DB2-TABLE dictionary member type syntax.

where column-specification is:

where referential-constraint is:

� �ADD� db2-table-name ;

� �

CREATOR-OWNER db2-user
DB2-TABLE

� �COLUMNS column-specification

� �

IN tbspace-name

� �SEE dataview-name FOR 'SOURCE'
������������������������������

� �;

�

� �CONTAINS

� �column-name
��

NOT-NULL PRIMARY-KEY

� �
������������������������������

referential-constraint

 ASG-Manager Products Relational Technology Support: DB2

86

Example of Generated DB2-TABLE Dictionary Member
The following DB2-TABLE dictionary member is generated for a table called
DEPARTMENT, in the WBDA. The table was generated from an input entity called
DEPARTMENT-ENT.

The table DEPARTMENT is a dependent table of the table MANAGER. It has columns
DEPARTMENT-NO (its primary key), DEPARTMENT-NAME, and MANAGER-NO
(its foreign key). The name of the table space assigned to it in the DB2 PREVIEW or
DB2 POPULATE command is DEP-TBSP. The name assigned for the
CREATOR-OWNER is USER1.

ADD DEPARTMENT ;
DB2-TABLE
CREATOR-OWNER USER1
COLUMNS CONTAINS DEPARTMENT-NO NOT-NULL PRIMARY-KEY

,DEPARTMENT-NAME
,MANAGER-NO

CONSTRAINT FOREIGN-KEY MANAGER-NO
 REFERENCES MANAGER

IN DEP-TBSP
SEE DEPARTMENT-ENT FOR 'SOURCE'
;

Generated DB2-INDEX Member

Generated DB2-INDEX Definition
What follows is the subset generated by the DB2 PREVIEW or DB2 POPULATE
command of the complete DB2-INDEX dictionary member type syntax.

� �CONSTRAINT FOREIGN KEY

� �column-name
���

MEMBER referred-member
� �REFERENCES table-name

� �ADD db2-index-name� ;

� �DB2-INDEX

� �

CREATOR-OWNER db2-user
� �UNIQUE ON table-name

� �CONTAINS column-name
�����������

� �SEE dataview-name FOR 'SOURCE'
������������������������������

� �;

�

3 DB2 Database Design

87

where db2-user, column-name, table-name, and dataview-name are valid
dictionary member names.

Example of Generated DB2-INDEX Dictionary Member
The following DB2-INDEX dictionary member is generated for a table called
DEPARTMENT, in the WBDA. The table was generated from an input entity called
DEPARTMENT-ENT.

The table DEPARTMENT has a primary key column called DEPARTMENT-NO. The
DB2-INDEX name is constructed by concatenating the table name with the default suffix
'-IND'. The name of the CREATOR-OWNER, assigned in the DB2 PREVIEW or DB2
POPULATE command, is USER 1.

ADD DEPARTMENT-IND ;
DB2-INDEX
CREATOR-OWNER USER1
UNIQUE ON DEPARTMENT
CONTAINS DEPARTMENT-NO
SEE DEPARTMENT-ENT FOR 'SOURCE'
;

Generated DB2-VIEW Member

Generated DB2-VIEW Definition
What follows is the subset generated by the DB2 PREVIEW or DB2 POPULATE
command of the complete DB2-VIEW dictionary member type syntax.

where db2-user, column-name, table-name, and dataview-name are valid
dictionary member names.

� �ADD� db2-view-name ;

� �DB2-VIEW

� �

CREATOR-OWNER db2-user

� �CONTAINS column-name
������������

� �SELECT ALL

� �FROM table-name

� �SEE dataview-view FOR 'SOURCE'
�������������������������

� �;

�

 ASG-Manager Products Relational Technology Support: DB2

88

Example of Generated DB2-VIEW Dictionary Member
The following DB2-VIEW dictionary member is generated for the table called
DEPARTMENT, in the WBDA. The table was generated from an input entity called
DEPARTMENT-ENT.

The table DEPARTMENT has columns called DEPARTMENT-NO,
DEPARTMENT-NAME, and MANAGER-NO.

The name of the DB2-VIEW member is constructed from the table name concatenated
with the default suffix -VIEW. The name of the CREATOR-OWNER, assigned in the
DB2 PREVIEW or DB2 POPULATE command, is USER 1.

ADD DEPARTMENT-VIEW;
DB2-VIEW
CREATOR-OWNER USER1
CONTAINS DEPARTMENT-NO, DEPARTMENT-NAME, MANAGER-NO
SELECT ALL
FROM DEPARTMENT
SEE DEPARTMENT-ENT FOR 'SOURCE'
;

Generated SYSTEM Member

Generated SYSTEM Definition
What follows is the subset generated by the DB2 PREVIEW or DB2 POPULATE
command of the complete SYSTEM dictionary member type syntax.

where db2-member is a valid dictionary member name.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
the complete SYSTEM member type syntax.

� �ADD system-name� ;

� �SYSTEM

� �CONTAINS db2-member
����������

� �;

�

3 DB2 Database Design

89

Example of Generated SYSTEM Dictionary Member
The following SYSTEM dictionary member is generated for a DB2 table called
DEPARTMENT, in the WBDA; INDEXES and VIEWS have also been specified for this
table in the DB2 PREVIEW or DB2 POPULATE command. The name of the SYSTEM
has been specified as DB2-SYSTEM-TEST.

ADD DB2-SYSTEM-TEST;
SYSTEM
CONTAINS DEPARTMENT-NO, DEPARTMENT-IND, DEPARTMENT-VIEW
;

 ASG-Manager Products Relational Technology Support: DB2

90

91

4 4Repository Definition

This chapter includes these sections:

Introduction to Documenting a DB2 DBMS. 91

Documenting DB2 Objects . 92

Documenting the Columns of Indexes, Tables, and Views 94

Documenting DB2 Security Information . 96

Naming Conventions for DB2 Members . 97
Generating External Names . 97
Naming Guidelines . 101

Interrogating Your DB2 Dictionary Schema . 102

Introduction to Documenting a DB2 DBMS
Several DB2 member types are available to enable you to document DB2 objects on the
repository. Generally, there is a one-to-one correspondence between a DB2 object and the
member type used to document it.

If you have more than one relational environment containing shared data, you can fully
document the data once in the repository, then define relationships between member
definitions to share that documentation. ITEM and GROUP members that document the
columns of DB2 tables and views may also be used in other applications in an
installation, and in other database schemas.

You can reflect different stages in the life cycle of a DB2 database using a hierarchy of
statuses, available with the change management facility. The DB2 catalog cannot do this,
since it records only the current status of the DB2 environment. Therefore, the repository
can be an important tool for change control in a DB2 environment.

Populate your repository with DB2-TABLE, DB2-VIEW, and DB2-INDEX members
using data modeling and design functions. The relational schema in the WBDA is used to
generate members for the first-cut DB2 design. These members constitute a first-cut
repository schema, which you can go on to develop and complete in the repository.

 ASG-Manager Products Relational Technology Support: DB2

92

Refer to Appendix B, "Documenting Other Relational Databases," on page 471 for details
of sharing data from several relational databases.

Refer to ASG-Manager Products Status Concepts for details of statuses.

Refer to Chapter 3, "DB2 Database Design," on page 27 for details of populating the
repository from the WBDA.

Documenting DB2 Objects
DB2 objects in the DB2 database schema are documented in the repository as members of
an equivalent type. The table below shows the correspondence between DB2 objects and
the repository member types that are used to document them. A DB2 repository member
can be said to represent the corresponding DB2 object.

.

Table 17 Correspondence between Repository Members and DB2 Objects:

Repository Member DB2 Object

DB2-DATABASE database

DB2-STOGROUP storage group

DB2-TBSPACE table space

DB2-INDEX index

DB2-TABLE table

DB2-ALIAS alias

DB2-VIEW view

DB2-PROCEDURE2. procedure

DB2-TRIGGER2. trigger

ITEM (or GROUP) column

DB2-PLAN plan

DB2-PACKAGE package

DB2-COLLECTION collection

DB2-DMS data manipulation statement

4 Repository Definition

93

Additional member types that do not represent DB2 objects are:

• DB2-LOCATION, which is used to document and generate the location name of a
table or view in distributed database environments

• DB2-USER, which is used to document the authorization ID of a DB2-USER

• DB2-PRIVILEGE, which is used to document the privileges held by users.

DB2-USER and DB2-PRIVILEGE members also model the DB2 security system and are
used to generate DB2 access privileges as SQL GRANT and REVOKE statements.

Refer to "Naming Conventions for DB2 Members" on page 97 for details of documenting
the DB2 security system.

Refer to Appendix C, "Defining and Generating DB2 Member Types," on page 475 for a
table of relationships between DB2 member types.

Where possible, consistency is maintained between the syntax of the DB2 member type
definitions and the syntax of the corresponding SQL statements required to create the
DB2 objects. In most instances, the keywords in a member definition statement are
identical to the equivalent DB2 keywords, and they have the same meanings.

To avoid duplicating effort and information when all or part of a member definition is the
same as that of another member, we have created a mechanism whereby two or more
members can share a definition. The AS clause allows you to refer to some of the clauses
in one member’s definition from another member, so that those parts of the definition that
are common to more than one member, are entered only once in the repository, and only
one member needs to be maintained.

Members named in the AS clause usually have the same member type as the member you
are defining. For example a DB2-VIEW is defined AS another DB2-VIEW. However, a
DB2 member type can refer to a user defined member type based on itself, and vice versa.
This allows you to define members representing a relational database other than DB2 and
still share data across different relational environments.

If you have SQL/DS and DB2 support you can name the corresponding SQL member
type in the AS clause of come DB2 member types. These are shown in Appendix C,
"Relationship Between DB2 Member Types" on page 475.

Note:
The only clause that must be present in a member definition for it to encode successfully
is the member type identifier. This allows you to document a database schema with as
much, or as little, information in each object definition, as is necessary at any stage in the
development of the database schema. Definitions can be built up in an incremental top
down approach, while giving you full interrogation and reporting capabilities.

 ASG-Manager Products Relational Technology Support: DB2

94

When you encode a member, it is checked to ensure that any members referred to are of
the correct type. When you generate SQL statements from a member, the generated
external name is checked to ensure that it conforms to the requirements of the target
external environment. The checks that are made on each clause are indicated in the
documentation of each member type.

Certain clauses must be present in a DB2 member definition when you generate an SQL
statement from it for generation to be successful. The clauses that must be present for the
successful generation of a particular SQL statement are indicated in the documentation of
each member type.

Refer to Appendix B, "Documenting Other Relational Databases," on page 471 for details
of using DB2 member types to define another relational database.

Refer to Appendix C, "Relationship Between DB2 Member Types" on page 475, for a
table showing relationships between DB2 member types.

Refer to Chapter 9, "Repository Member Types," on page 331 for details of the AS
clause.

Documenting the Columns of Indexes, Tables, and Views
You can document the types of data that can be held in the corresponding columns of
DB2 tables and views, using the form description in ITEM members. These ITEMs are
referred to by DB2-TABLE, DB2-VIEW, DB2-INDEX, and DB2-PRIVILEGE
members. Since DB2 objects can contain many columns, DB2 members types may refer
to many ITEM members. To simplify the references, you can define a number of ITEM
members as belonging to a GROUP, which the DB2 member then refers to.

When you generate SQL statements and host language structures using either the export
to DB2 panels or the DB2 CREATE, DB2 DECLARE, DB2 ALTER, DB2 PRODUCE,
and DB2 GRANT commands, the data type is generated from the form description.

The data type of a generated column is determined firstly by the form keyword specified
in the COLUMNS clause in a DB2-INDEX, DB2-TABLE, or DB2-VIEW member
definition, and secondly by the VERSION number specified in the member definition of
the ITEM, which represents the column. The form keyword specified in the COLUMNS
clause applies to all the ITEMs and GROUPs specified in the CONTAINS clause. If the
specified form of any individual ITEM does not hold the correct data type, you can
specify for that ITEM an additional version, which does hold the correct data type.

The data type generated for host language data structures also depends on the target
language.

4 Repository Definition

95

Refer to Appendix C, "Defining and Generating DB2 Member Types," on page 475 for
details of the data types generated from different form descriptions.

When PL/1, COBOL, or Assembler host language data structures are generated from an
ITEM that includes any of these USAGE clauses: USAGE TIME, USAGE DATE, and
USAGE TIMESTAMP the form description is ignored. However, you should still define
a form description, in order to ensure that the generated length of the field is compatible
with environments other than DB2.

In ITEMs that include a USAGE TIME or USAGE DATE clause, the form description
should be specified as a CHARACTER field with a length compatible with the default
length specified in the global variables MPDY_CM_LOCAL_TIME and
MPDY_CM_LOCAL_DATE.

In an ITEM that includes a USAGE TIMESTAMP clause, the form description should be
specified as a CHARACTER field with a length of 26.

The DB2 data type of a column generated from a GROUP that is not expanded depends
on the aggregate length and whether any of the contained ITEMs are of variable length. It
is one of these:

To find the length of the fields, produce a record layout from a GROUP member using
either the export panels or the PRODUCE command.

If the aggregate length of the record is less than 255 and any of the fields in the record
layout are marked as VARIABLE, the DB2 data type is VARCHAR(m), and if no fields
are marked as VARIABLE, the DB2 data type is CHAR(m). If m is equal to or greater than
255, the DB2 data type is always LONG VARCHAR.

Note:
The data types of generated columns are expressed differently according to the
destination host language (SQL, PL/1, COBOL, or Assembler). Refer to Appendix C,
"Data Types Generated from Form Descriptions" on page 478, for a table that shows how
column data types for different host languages are generated from form descriptions in
ITEM members.

CHAR(m) Where m is the aggregate length of fixed fields that
constitute the group and m is less than 255 characters.

VARCHAR(m) Where m is the aggregate length of fields that constitute
the group and one or more of the fields are of variable
length and m is less than 255 characters.

LONG VARCHAR(m) Where m is the aggregate length of fields that constitute
the group (regardless of whether none or some are of
variable length) and m is greater than or equal to 255.

 ASG-Manager Products Relational Technology Support: DB2

96

Refer to Appendix C, "Defining and Generating DB2 Member Types," on page 475 for
details of data types generated for columns.

Refer to ASG-Manager Products Dictionary/Repository User’s Guide for syntax of the
ITEM member type.

Documenting DB2 Security Information
DB2’s security system enables you to control access to objects in the DB2 environment.
The DB2-USER and DB2-PRIVILEGE member types are provided in the repository
schema to document the DB2 security system.

A DB2-user must have an authorization ID to be able to sign on to DB2. This
authorization ID is recorded in the repository as a DB2-USER member type.

DB2 privileges are granted to users by means of an SQL GRANT statement. All
privileges are granted by a particular user (the GRANTOR) to another user (the
GRANTEE). The privilege is recorded in the DB2 catalog, and is used by DB2 whenever
it is necessary to check if the signed on user has permission to perform an particular DB2
operation. You can document privileges in the repository as DB2-PRIVILEGE members.

Together, the DB2-USER and DB2-PRIVILEGE member types allow you to document
the DB2 objects to which particular users have access, and what access rights they have.
Database Administrators interrogate the repository model of the DB2 security system
using repository functions or repository interrogation commands.

The DB2-USER and DB2-PRIVILEGE repository definitions are also used to generate
SQL GRANT, SQL REVOKE, and SQL CREATE SYNONYM statements.

Refer to Chapter 9, "Repository Member Types," on page 331 for details of defining
DB2-PRIVILEGE and DB2-USER members.

4 Repository Definition

97

Naming Conventions for DB2 Members

Generating External Names
When you generate SQL statements from DB2 members the external names of the DB2
objects that they represent must conform to the naming rules for DB2. In this case, the
external name of an object is the name by which it is known to DB2 and which is
recorded in the DB2 catalog, that is, the "DB2 name."

In addition, when you generate COBOL, PL/1, or Assembler host language structures
from a DB2 member containing columns, the external names of the columns must also
conform to the rules appropriate for the relevant host language. In this case, the external
name of an object is the name by which it is known by COBOL, PL/1, or Assembler.

In order to generate an acceptable external name, a number of processes are applied.
Therefore, when you document a DB2 member in the repository, it is important to know
how the external name is derived from the repository definition.

If you want to generate external names from the ALIAS clause in member definitions,
your systems administrator must ensure that your DB2 profile is tailored appropriately,
and that an alias table exists for each language you want to generate. You can change the
name to be generated using the name editing options available in the export panels and
commands.

Hyphens separating the constituent parts of names are changed to underscores, on
generation of an SQL statement.

All derived external names are subjected to a final check, on generation, to ensure they
are valid for the relevant external environment. The check includes ensuring that external
names are not longer than permitted by the relevant external environment. If a name is
too long, then some characters are removed to reduce the length.

See Chapter 5, "Export to DB2," on page 105 for details of DB2 profiles.

See Chapter 8, "Commands," on page 175 for details of name editing options.

See Appendix A, "Name Reduction Process," on page 467 for details of how names are
reduced.

 ASG-Manager Products Relational Technology Support: DB2

98

Generating Column Names
The names of columns in tables, views, and indexes are derived from the first of the
following sources that can be found.

• The name specified in the COLUMN NAME clause of a DB2-VIEW member

• The name specified in the KNOWN AS clause of the DB2-TABLE, DB2-VIEW, or
DB2-INDEX in which the columns are defined

• The name defined in the ALIAS clause of the ITEM or GROUP member that
represents the column, when your DB2 profile is tailored to use ALIAS clauses

• The repository name of the ITEM or GROUP member that represents the column.

The derived column name is then:

• Edited according to any name editing options specified in the export panel or the
DB2 command

• Reduced to 18 characters, if the name exceeds this maximum

• Suffixed with an underscore and integer, if the generated name duplicates another.

The unqualified DB2 name of a column may be no longer than 18 characters. Refer to
Appendix A, "Name Reduction Process," on page 467 for details of the name reduction
process.

Generating Names for Aliases, Tables, Databases, Indexes, Views, Table Spaces, and
Storage Groups

The names of aliases, tables, views, indexes, databases, table spaces, and storage groups
are derived from the first of the following sources than can be found:

• The name specified in the ALIAS clause of the member that represents the object,
when your DB2 profile is tailored to use ALIAS clauses

• The repository name of the member that represents the object.

The derived object name is then:

• Edited according to any name editing options specified in the export panel or the
DB2 command

• Reduced to the required number of characters, if the name exceeds the maximum.

Note:
Alias, index, table, table space, and view names must have a qualifier defined to be
generated successfully.

Databases and storage groups have unqualified names of no more than eight characters.

4 Repository Definition

99

Table spaces have names of no more than eight characters, qualified with a database
name.

Aliases, indexes, tables, and views have names of no more than 18 characters, qualified
with an owner name.

Tables and views can optionally have three-part names, with both location and owner
qualifiers.

Generating Names for Synonyms, Catalogs, Passwords, and Programs
The DB2 object names of synonyms, catalogs, passwords, and programs are derived
directly from the corresponding names specified in the repository definitions where they
appear. The name of a synonym may be no longer than 18 characters. The names of
catalogs, passwords, and programs may be no longer than eight characters.

Generating Two-part Names
The default setting in your DB2 profile is for two-part name generation.

Table space names can be qualified with the name of the database in which the table
space resides. The database qualifier is derived from the first of the following sources that
can be found:

• The name specified in the ALIAS clause of the DB2-DATABASE member named
in the IN clause of the DB2-TBSPACE being generated, when your DB2 profile is
tailored to use ALIAS clauses

• The member name of the DB2-DATABASE named in the IN clause of the DB2-
TBSPACE being generated.

Alias, index, table, and view names can be qualified with the name of the user who owns
them.

The user qualifier is derived from the first of these sources that can be found:

• The name specified in the SQLID clause of an export panel or a DB2 command

• The name specified in the ALIAS clause of the DB2-USER member named in the
CREATOR-OWNER clause of the member being generated, when your profile is
tailored to use ALIAS clauses

• The repository name of the DB2-USER named in the CREATOR-OWNER clause
of the member being generated.

The generated user qualification corresponds to the DB2 authorization ID, and may be no
longer than eight characters.

 ASG-Manager Products Relational Technology Support: DB2

100

To generate alias, index, table, and view names with no owner qualifier, specify the
SQLID clause in the DB2 command with a single blank space, as follows:

SQLID ' '

If no user qualifier can be found, the name is generated with a prefix of eight question
marks, indicating that the qualifier is missing. You should correct the
CREATOR-OWNER clause in the member definition, or specify an SQLID clause in the
DB2 command, and regenerate the SQL statement.

The object you are generating may refer to other objects. Referenced object names are
generated with qualifiers. If you do not want referenced object names to have qualifiers
you can tailor your DB2 profile.

See Chapter 5, "Export to DB2," on page 105 for details of tailoring your DB2 profile.

Generating Three-part Names
If your profile is set to three-part name generation, an additional location qualifier is
generated for tables and views.

The location qualifier is derived from the first of these sources that can be found:

• The name specified in the LOCATION clause of an export panel or a DB2
command

• The name specified in the ALIAS clause of the DB2-LOCATION member named
in the LOCATION clause of the DB2-USER member named in the
CREATOR-OWNER clause of the DB2-TABLE or DB2-VIEW member being
generated where your profile is set to select ALIAS clauses

• The repository name of the DB2-LOCATION referred to in the LOCATION clause
of the DB2-USER member named in the CREATOR-OWNER clause of the
DB2-TABLE or DB2-VIEW member.

If no location qualifier can be found, the name is generated with a prefix of 16 question
marks, indicating that the qualifier is missing. You should correct the member definition,
or specify a LOCATION clause in the DB2 command, and regenerate the SQL statement.

4 Repository Definition

101

Naming Guidelines
Although mechanisms are provided to derive names for DB2 objects that are acceptable
when DB2 member types are used in the generation of SQL statements or host language
data structures, you should be aware that, in many cases, arriving at an acceptable name
may involve some loss of information, that is, you will not know the DB2 name of an
object by looking at the member in which it is documented. This is the case when. name
editing or name reduction takes place and when you specify names in the KNOWN AS
clauses of DB2-TABLE, DB2-VIEW, DB2-PRIVILEGE, DB2-USER, and DB2-INDEX
member definitions. When such a loss of information does take place, it may be no longer
possible to determine unambiguously the repository origin of an external name. It is
important, therefore, to establish a naming strategy before you start to define DB2
members in your repository.

The simplest approach to a reliable naming strategy is to ensure that all external names of
DB2 objects are derived directly from the repository member name of the member that
represents it in the repository.

The way to achieve this is to omit these clauses in your member definitions:

• The COLUMN NAME clause of a DB2-VIEW member

• The KNOWN AS clause of DB2-TABLE, DB2-VIEW, DB2-PRIVILEGE,
DB2-USER, and DB2-INDEX members

• The ALIAS clause of any member (assuming your environment is tailored to
generate aliases as external names)

and to omit these clauses from export panels or DB2 commands that generate SQL
statements:

• The LOCATION clause

• The SQLID clause

• Name editing options

Since the external name is taken from the repository name of the member that represents
a DB2 object, there is a direct correspondence between the repository and external
environments. Therefore, it is straightforward to match DB2 objects with the repository
members that represent them, since they have the same name in the repository as they do
on the DB2 catalog, and in host language structures where they are used.

This is the simplest approach and the most efficient in terms of processing time.

However, this is not practical in all environments. For example, you may wish to include
in your DB2 schema an already existing GROUP or ITEM with a name the length of
which exceeds the allowed maximum for the target external environment. This situation
may arise when, for instance, the external environment is an Assembler language where
the maximum length of names is eight characters.

 ASG-Manager Products Relational Technology Support: DB2

102

In this situation, consider using aliases that correspond to the external environment in
question. If, for example, you use SQL and COBOL, set up SQL and COBOL aliases for
each member. Although aliases are not checked to ensure their uniqueness in the
repository (which means that two unrelated members could have the same alias),
interrogation commands that can detect a duplicate alias can be used to guard against
alias duplication.

For example, you can interrogate the repository to find out all the members of the type
DB2-TABLE that have a specific alias name. You can then change the alias names of all
but one of these DB2-TABLE members, in order to achieve unique names. The generated
table name in the DB2 catalog then corresponds with the SQL ALIAS of one and only
one DB2-TABLE repository member.

Note:
The extra work involved in deriving external names from aliases can increase processing
time. By deactivating the alias tables you can reduce processing.

If you use COBOL, a more descriptive variant is possible, since COBOL allows names of
up to 30 characters in length, while SQL allows a maximum of 18 characters. For
example, the COBOL name of the table could be EMPLOYEE MAIN TABLE (which is
19 characters long).

Choose repository and external names carefully. If necessary, use aliases and
interrogation capabilities to implement a sound naming strategy that allows for a direct
correspondence between your DB2 repository schema, the database schema which it
represents, and other external environments in which objects may be used.

Interrogating Your DB2 Dictionary Schema
Member type keywords are available for use in these commands:

• BULK

• GLOSSARY

• LIST

• PERFORM

• REPORT

• WHICH

4 Repository Definition

103

These interrogation keywords are added to the member type keywords so that the
definitions of DB2 objects may be processed in the repository in the same way as other
repository members:

• DB2-ALIAS

• DB2-COLLECTION

• DB2-DATABASE

• DB2-DMS

• DB2-INDEX

• DB2-LOCATION

• DB2-PACKAGE

• DB2-PLAN

• DB2-PRIVILEGE

• DB2-PROCEDURE2.

• DB2-STOGROUP

• DB2-TABLE

• DB2-TBSPACE

• DB2-TRIGGER2.

• DB2-USER

• DB2-VIEW

In addition, the alias type keyword SQL is available in the ALIAS clause. Defining an
SQL ALIAS for a DB2 member, ensures that the name defined is used in the DB2
environment.

 ASG-Manager Products Relational Technology Support: DB2

104

105

5 5Export to DB2

This chapter includes these sections:

Generating Output . 106
Submitting Generated Output to Your Relational Environment. 107

Tailoring Output . 109
Introduction to Tailoring . 110
Generating Object Names and External Names from Aliases 114
Tailoring DATE and TIME Character Field Lengths . 115
Generating a Host Language Data Structure with an SQL DECLARE Statement. . . . 116
Generating an SQL DECLARE Statement with a Host Language Data Structure. . . . 117
Setting the Release of DB2 . 117
Setting the Release Flag . 117
Generating Flat or Nested Data Structures . 117
Generating Indicator Structures . 118
Generating Indicator Suffixes on Structures . 118
Setting Suffixes Applied to Indicator Array Names . 119
Setting Suffixes Applied to Variable-Length Column Names 119
Automatically Generating SQL COMMENT ON/LABEL ON Statements 119
Generating One-, Two-, or Three-part Names for DB2 Objects. 120
Setting a Tolerance Level for Output . 121
Setting the SQL Escape Character . 121
Setting Width of Output for SQL COMMENT ON Statements 122
Setting Width/Indent of the SQL DROP Impact Analysis Report 122
Allowing an Optional Space Character when Generating SQL DECIMAL Datatypes 122
Accessing a Specific DB2 Subsystem or Plan . 123
Setting EXPORT Generated Object-name Length . 123
Setting the Generated Column Data Type . 124
Creating an INSERT Statement for Stored Procedures . 124
Introduction to User Exits . 124
Taking User Exits when Accessing a Repository Member. 125
Taking User Exits For Specified DB2 Export Functions . 125
Taking User Exits for an Individual Export Function. 129

 ASG-Manager Products Relational Technology Support: DB2

106

Generating Output
Export to DB2 functions are provided by Manager Products DB2 commands and export
panels (menu E310000). Using these functions, you can:

• Generate these SQL statements:

• Generate Assembler, COBOL, or PLl host language data structures, for use (with
embedded SQL statements) within application programs

• Generate reports describing the layout of repository members documenting DB2
tables or views

• Generate BIND or REBIND subcommands to submit to your DB2 environment

• Produce a report showing the impact of a specific SQL DROP statement in your
DB2 environment

• Produce an estimate of the size of an index, or a table and its rows, and so estimate
storage space before generating an SQL CREATE statement

• Set up a trace facility displaying diagnostic information when generating SQL
statements or host language data structures.

DB2 definition functions provide the repository members needed to document the objects
which exist or are to be created in your DB2 environment.

Column data types in tables or views are given in ITEM or GROUP members referred to
(in the CONTAINS attribute) by DB2-TABLE and DB2-VIEW members from which
output is generated.

See "Documenting DB2 Security Information" on page 96 for details of how the data type
of columns are derived.

You can automatically file generated output in a USER-MEMBER, or in an external file,
which you can use as input to your DB2 environment. You can also use dynamic SQL
functions to dynamically submit the SQL statements you have generated to your DB2
environment from within Manager Products.

ALTER2. GRANT

COMMENT ON2. LABEL ON

CREATE2. REVOKE

DECLARE2. CREATE SYNONYM

DROP2. DROPSYNONYM

5 Export to DB2

107

See Chapter 6, "Dynamic Import/Export," on page 131 for details of dynamic SQL
Functions.

You can tailor the output generated by altering the DB2 profile.

See "Tailoring Output" on page 109 for details of tailoring output.

You can use these functions to document, implement, and maintain your DB2
environment.

Figure 23 illustrates the process of exporting generated output.

Figure 23 • Exporting Generated Output

Submitting Generated Output to Your Relational Environment
Using dynamic SQL functions, you can dynamically submit generated SQL statements to
your relational environment, from within Manager Products. To use dynamic SQL
functions you must have either DB2 or SQL/DS available on the same CPU and operating
system as Manager Products.

Alternatively, you can file generated output either in a USER-MEMBER on the MP-AID,
or in an external file. If you file output on the MP-AID, you can then later choose to
transfer the output from the USER-MEMBER into an external file, using the
TRANSFER command. You can use the external file as input to your relational
environment, or for inclusion in your application programs.

REPOSITORY

DB2

generated
utility statement

BIND
REBIND

generated
SQL statement

ALTER
COMMENT ON
CREATE
DROP
GRANT
LABEL ON
REVOKE

layouts
table and
row sizes

analysistable

DROP impact Diagnostic
information

during output
generation

analysis reports generated host
language data structure

DECLARE TABLE PROGRAM
SOURCE:
Assembler
COBOL
PL/1

 ASG-Manager Products Relational Technology Support: DB2

108

Dynamic SQL functions can only submit SQL statements that can be dynamically
prepared for execution. You therefore cannot submit SQL DECLARE statements using
dynamic SQL functions.

SQL DECLARE statements and host language data structures should be embedded in
application programs and must be output to an external file either directly or indirectly (as
described above). Your application program can then use SQL COPY or INCLUDE
statements to reference the external file.

See Chapter 6, "Dynamic Import/Export," on page 131 for details of dynamic SQL
functions. See "Output Generation Options" on page 324 for details of filing generated
output.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
the TRANSFER command.

5 Export to DB2

109

Tailoring Output
Figure 24 • Structure of the Example DB2 Profile

Logon/Global Profile

Instructions
executive-routine;

executive-routine (MPDY12PROF)
mpxx literal=:
RETAIN
global mpdy_gl_profilename
command mpdy_db2_release_no /* unset = latest DB2 release (3.1) */
command mpdy_db2_release_flag /* unset = Error message issued. */
mpdy_gl_profilename = :MPDY12PROF: /* name of this DB2 profile
mpdy_db2_release_no = :6.0:2.5
mpdy_db2_release_flag = :W:
mpdy_cm_db2alias = :MPR-EX-DB2:
mpdy_cm_sqlalias = :MPR-EX-DB2:
mpdy_cm_cobolalias = :MPR-EX-COB:
mpdy_cm_plialias = :MPR-EX-PL1:
mpdy_cm_balalias = :MPR-EX-BAL:

mpr :MPDYADDXIT OUT DB2-CREATE-TABLEMPDY12OXCR ;:
mpr :MPDYADDXIT COL DB2-CREATE-TABLEMPDY12DXCL ;:
mpr :MPDYADDXIT OBJ DB2-CREATE-TABLEMPDY12DXOB ;:
mpr :MPDYADDXIT OUT DB2-CREATE-VIEW MPDY12OXCV ;:
mpr :MPDYADDXIT WBTA DB2-CREATE-TABLE MPDY12DXWB ;:
mpr :MPDYADDXIT OUT DB2-LABEL-TABLEMPDY12OXCR ;:
mpr :MPDYADDXIT COL DB2-LABEL-TABLEMPDY12OXCR ;:
mpr :MPDYADDXIT OBJ DB2-LABEL-TABLEMPDY12OXCR ;:
mpr :MPDYADDXIT WBTA DB2-LABEL-TABLEMPDY12OXCR ;:
mpr :MPDYADDXIT OUT DB2-PRODTAB-COB-FOR-WS MPIDY1 2OXPC ;:
mpr :MPDYADDXIT OUT DB2-PRODTAB-PL1-FOR-WS PDYI2OXPP ;:
mpr :MPDYADDXIT OUT DB2-PRODTAB-BAL-FOR-WS PDY12OXPB ;:
global mpdy_db2ssn mpdy_planname

/*mpdy_db2ssn = :xxxxxx:
mpdy_planname = :MPDB2: /* ASG default

 ASG-Manager Products Relational Technology Support: DB2

110

Introduction to Tailoring
You can create a DB2 profile, which can tailor generated output. For example, use a DB2
profile to derive DB2 object names in SQL statements from aliases instead of member
names.

The DB2 profile is called from either the Global or Logon profile, and is either:

• A Corporate executive routine, created by the systems administrator for all users, or

• A User executive routine, created by individual users, and applying to these users
only. These profiles should be created under the supervision of the systems
administrator, as they override DB2 profiles which are Corporate executive
routines.

ASG provides these example EXECUTIVE members:

• MPDY12PROF as a DB2 profile

• MPR-EX-DB2, MPR-EX-COB, and MPR-EX-BAL, as DB2 alias tables

• MPDY12OXCR, MPDY12OXPB, MPDY12OXPC, MPDY12OXPP, and
MPDYl2OXCV as user exit routines

These members are shown in Figure 24 on page 109.

You can call user exit routines by invoking the COMMAND member MPDYADDXIT in
your DB2 profile.

Refer to the sections "Setting EXPORT Generated Object-name Length" on page 123
through "Taking User Exits when Accessing a Repository Member" on page 125 for
details of calling user exit routines.

You can tailor the report showing the impact of an SQL DROP statement by altering the
Corporate executive routine MPDYl2DRRL. We recommend that you consult your local
ASG product supplier before altering this routine.

You can alter the values of these variables to tailor output to your DB2 environment:

Variable Name Purpose

MPDY_GL_PROFILENAME Mandatory global variable: must be declared
and set to the DB2 profile name.

MPDY_CM_DB2ALIAS Derives DB2 object names in SQL statements
from aliases.

MPDY_CM_BALALIAS
MPDY_CM_COBOLALIAS
MPDY_CM_PL1ALIAS

Derives external names in Assembler,
COBOL, and PLI host language data
structures from aliases.

5 Export to DB2

111

MPDY_CM_ALIAS(n) Specifies the type of alias from which you
want to derive DB2 object names and external
names.

MPDY_CM_ALIASNUM Stops DB2 object names and external names
being derived from aliases.

MPDY_CM_LOCAL_DATE
MPDY_CM_LOCAL_TIME

Generates column variables in host language
data structures that are compatible with your
DB2 installation settings for date and time.

MPDY_CM_HOSTOPT Automatically generates a host language data
structure when generating an SQL
DECLARE statement.

MPDY_CM_DECLAREOPT Automatically generates an SQL DECLARE
statement when generating a host language
data structure.

MPDY_DB_SYSTEM2.5 Sets the specific relational DB system.

MPDY_DB_SYSTEM_VARIANT2.5 Specific variant for which commands should
be done.

MPDY_DB2_RELEASE_NO2.5 Specifies the release of DB2 in use.

MPDY_DB2_RELEASE_FLAG Specifies the release flag.

MPDY_ORACLE_RELEASE_NO2.5 Specifies the release of Oracle in use.

MPDY_ORACLE_RELEASE_FLAG Specifies the release flag.

MPDY_INFORMIX_RELEASE_NO Specifies the release of Informix in use.

MPDY_INFORMIX_RELEASE_FLAG Specifies the release flag.

MPDY_SYBASE_RELEASE_NO Specifies the release of Sybase in use.

MPDY_SYBASE_RELEASE_FLAG Specifies the release flag.

MPDY_FOR_OPTION Specifies what type of host language data
structure is generated: two-level or
multi-level.

MPDY_INDICATOR_ONLY2.5 No host structure.

MPDY_INDICATOR_HDR12.5 No host structure.

MPDY_INDICATOR_HDR22.5 No host structure.

MPDY_INDICATOR_PREFIX2.5 Prefix for variables.

MPDY_INDICATOR_OPTION Generates indicator structures when
generating host language data structures.

MPDY_INDICATOR_SUFFIX Specifies a suffix for indicator variables.

Variable Name Purpose

 ASG-Manager Products Relational Technology Support: DB2

112

MPDY_IND_ARRAY_SUFF_n Specifies a suffix for indicator arrays.

MPDY_INDICATOR_DELBAL2.5 Deliverable for Assembler.

MPDY_INDICATOR_DELPLI2.5 Deliverable for PL/I.

MPDY_INDICATOR_DELCOB2.5 Deliverable for COBOL.

MPDY_COB_SUFF_n Specifies a suffix for the name generated
when a column has a variable length
definition.

MPDY_COB_HOST_SUFF12.5 Specifies a suffix for COBOL host structures
on level 01.

MPDY_COB_HOST_SUFF22.5 Specifies a suffix for COBOL host structures
for subsequent levels.

MPDY_COB_HOST_PREF12.5 Specifies a prefix for COBOL host structures
on level 01.

MPDY_COB_HOST_PREF22.5 Specifies a prefix for COBOL host structures
for subsequent levels.

MPDY_CM_COMMENTOPT
MPDY_CM_LABELOPT

Enables SQL COMMENT ON or LABEL
ON statements to be automatically generated
when generating an SQL CREATE
statement.

MPDY_CM_NAME_QUAL Generates one, two, or three-part names for
DB2 aliases, indexes, packages, tables, and
views.

MPDY_CM_SENDF_THRESH Sets tolerance level for sending output.

MPDY_CM_SQL_ESCAPE Sets SQL escape character.

MPDY_CM_COMMENT_LM
MPDY_CM_COMMENT_RM

Sets default left and right margins for
COMMENT ON output.

MPDY_CM_DR_WIDTH
MPDY_CM_DR_INDENT

Sets default width and indent for the DROP
impact analysis report.

MPDY_CM_DCML_SPACE Generates a space after the comma when
generating SQL DECIMAL(n,m) datatypes.

MPDY_DB2SSN Specifies a DB2 subsystem name.

MPDY_PLANNAME Specifies a DB2 plan name.

MPDY_CM_BALLENGTH Specifies maximum length of names from
BAL.

MPDY_CM_COBLENGTH Specifies maximum length of names from
COBOL.

Variable Name Purpose

5 Export to DB2

113

MPDY_CM_PL1LENGTH Specifies maximum length of names from
PL1.

MPDY_CM_NUM_GEN Specifies the data type of the column
generated from an item with form-description
NUMERIC- CHAR. Valid options are DEC
or CHAR. The default is DEC.

MPDY_PRIMARY_IS_NOTNULL2.5 Adds NOT NULL if the column is primary
key.

These variables are used for DB2 5.x:2.5

MPDY_STORPROC_AUTHID2.5 Specifies the authorization ID

MPDY_STORPROC_LUNAME2.5 Specifies the LU-Name of the system
executing the call.

MPDY_STORPROC_LINKAGE2.5 Specifies the linkage conventions of
parameters.

MPDY_STORPROC_COLLID2.5 Specifies the name of the collection to be used

MPDY_STORPROC_LANGUAGE2.5 Specifies either Assembler, COBOL, PL\I, or
C as the program language.

MPDY_STORPROC_ASUTIME2.5 Specifies the number of service units before
forcing termination.

MPDY_STORPROC_STAYRES2.5 Flag to keep the procedure in memory after
execution.

MPDY_STORPROC_RUNOPTS2.5 LE/370 run-time-options.

MPDY_STORPROC_WLENV2.5 Specifies the name of the workload manager
environment.

MPDY_STORPROC_PGMTYPE2.5 Specifies either MAIN or SUB.

MPDY_STORPROC_EXTSEC2.5 Flag to control if non-SQL-resources need
RACF-authorization.

MPDY_STORPROC_COMMIT2.5 Flag to control automatic COMMIT when the
procedure ends.

MPDY_CM_OBJEXIT
MPDY_CM_COLEXIT

Specifies a user exit to be taken for each DB2
object, or each column in a DB2 table, index,
or view, during generation.

Variable Name Purpose

 ASG-Manager Products Relational Technology Support: DB2

114

Generating Object Names and External Names from Aliases
You can tailor generated output to derive DB2 object names in SQL statements and
external names in host language data structures from aliases.

To generate aliases as DB2 object names in SQL statements, enter the following in your
DB2 profile:

MPDY_CM_DB2ALIAS = :sql-alias-table:

To generate aliases as external names in Assembler, COBOL, and PL1 host language data
structures, enter the following in your DB2 profile:

MPDY_CM_BALALIAS = :assembler-alias-table:
MPDY_CM_COBOLALIAS = cobol-alias-table:
MPDY_CM_PLIALIAS = pli-alias-table:

where sql-alias-table, assembler-alias-table, cobol-alias-table, and
pli-alias-table are alias tables: executive routines containing directives specifying
the types of alias from which the DB2 object or external name is derived.

You should create a separate alias table for each language. For each table you should
specify, in order of preference, the types of alias from which, if present, you want the
DB2 object or external names to be derived.

For example, you can derive external names from COBOL aliases when generating
COBOL host language data structures, by specifying the COBOL alias type in the
cobol-alias-table.

Refer to "Interrogating Your DB2 Dictionary Schema" on page 102 for details of how
names are derived.

To specify the type of alias from which you want to derive DB2 object or external names,
enter the following in each alias table:

MPDY_CM_ALIAS(n) = :alias-type:

where alias-type is any of the types of aliases available in your repository.

You can specify alternative keywords (alias-type synonyms) by using the CONTROL
NEW-ALIAS command. DB2 object names and external names are only generated
correctly when you use the first alias-type keyword for any given alias. Use the SHOW
ALIAS-TYPES command to find out the types of aliases available in your repository.

Refer to your installation manual for details of the CONTROL NEW-ALIAS command.

where n is an integer specifying the order of interrogation of each alias-type to derive the
DB2 object or external name, if more than one directive has been entered.

5 Export to DB2

115

The DB2 object or external name is derived from the first of the interrogated alias-types
found in the repository member from which the output is being generated.

Alias-type 1 is interrogated first. If it is not present, alias-type 2 is interrogated next and
so on until an interrogated alias-type is found.

If alias-type is NO-TYPE the DB2 object or external name will be derived from the fIrst
general alias interrogated. You can only derive the DB2 object or external name from the
first general alias in the member.

If a member has no ALIAS attribute or no ALIAS attribute of the types specified in the
Alias Table then the default (the member’s name) will be generated as the DB2 object or
external name.

Manager Products provide four example EXECUTIVE members as alias tables. These
are MPR-EX-BAL, MPR-EX-PL1, MPR-EX-COB and MPR-EX-DB2, for the
Assembler, PL1, COBOL and SQL languages. You can use these as models.

To return to the default either remove the relevant instructions or enter:

MPDY_CM_ALIASNUM = 0

in a particular alias table to deactivate that alias table, or in the DB2 profile to deactivate
all the alias tables.

Refer to the DB2-DATABASE member type in Chapter 9, "Repository Member Types,"
on page 331 for an example of an object name generated from an alias.

Tailoring DATE and TIME Character Field Lengths
You can tailor the character field lengths generated for column variables in host language
data structures that correspond to a DB2 data type of DATE or TIME. You should set
them to the value of the LOCAL DATE LENGTH and LOCAL TIME LENGTH
installation options for your DB2 environment. The length values specified also apply in
the context of DB2 SIZE and DB2 RECALCULATE.

To tailor DATE lengths, enter the following in your DB2 profile:

MPDY_CM_LOCAL_DATE = n

where n is the character field length. The minimum value, 10, is the default.

To tailor TIME lengths, enter the following in your DB2 profile:

MPDY_CM_LOCAL_TIME = n

where n is the character field length. The minimum value, 8, is the default.

 ASG-Manager Products Relational Technology Support: DB2

116

Generating a Host Language Data Structure with an SQL DECLARE Statement
You can automatically generate a host language data structure whenever you generate an
SQL DECLARE statement. Both the SQL DECLARE statement and the host structure
are generated in the same language.

To automatically generate a host structure with an SQL DECLARE statement, enter the
following in your DB2 profile:

MPDY_CM_HOSTOPT = :ON:

Processing times are faster if the SQL DECLARE statement and the host language data
structure are generated together rather than individually.

If you have also tailored your DB2 profile to generate:

• Character field lengths compatible with your DB2 installation settings for time and
date, and/or

• A host language indicator structure

• A specific type of host structure (two-level or multi-level)

these alterations are applied to the generated output.

If you have tailored your DB2 profile so that DB2 object names are derived from aliases:

• For an SQL DECLARE statement, the DB2 Alias Table is always used

• For a host language data structure, the Alias Table of the relevant language is used.

Refer to "Generating Object Names and External Names from Aliases" on page 114 for
details of deriving object names from aliases.

Names generated for a host language data structure are reduced (when necessary) by the
name reduction process to the individual target language requirements.

Refer to Appendix A, "Name Reduction Process," on page 467 for details of the name
reduction process.

Note:
External names generated for a host structure may differ from those generated from the
same member for an SQL DECLARE statement.

To generate SQL DECLARE statements and host language data structures separately,
either remove the variable from the DB2 profile, or alter it to read:

MPDY_CM_HOSTOPT = :OFF:

5 Export to DB2

117

Generating an SQL DECLARE Statement with a Host Language Data Structure
To automatically generate an SQL DECLARE statement whenever you generate host
language data structures, enter the following in your DB2 profile:

MPDY_CM_DECLAREOPT = :ON:

Note:
This variable acts in the same way as the WITH-DECLARE keyword in the DB2
PRODUCE command.

Refer to the DB2 PRODUCE command in Chapter 8, "Commands," on page 175 for
details of generating host language data structures.

Setting the Release of DB2
To ensure compatibility between DB2 and generated SQL statements, you can set the
contents of the variable MPDY_DB2_RELEASE_NO to specify which version of DB2 is
installed. To set its contents, enter the following in your DB2 profile:

MPDY_DB2_RELEASE_NO = :release:

where release is 2.2, 2.3, or 3.1. 2.2 represents version 2.2 itself or earlier versions. The
default value is 3.1. If unset, the latest version is assumed.

Setting the Release Flag
The release flag controls the action taken if a DB2 version compatibility problem should
arise, for example, if a member containing version 2.3 clauses is encountered where the
active DB2 release is 2.2. To set the flag, enter the following in your DB2 profile:

MPDY_DB2_RELEASE_FLAG = :flag:

where flag is E, G, W, or S. The default is E. These values have the following meanings:

E: An error message is issued; SQL is not generated.
G: A warning message is issued; SQL is generated.
W: A warning message is issued; SQL is not generated.
S: All messages are suppressed; SQL is not generated.

Generating Flat or Nested Data Structures
You can generate either flat (two-level) or nested (multi-level) host language data
structures.

 ASG-Manager Products Relational Technology Support: DB2

118

To generate flat data structures (the default option), enter the following in your DB2
profile:

MPDY_FOR_OPTION = :SQL:

To generate nested data structures, enter the following in your DB2 profile:

MPDY_FOR_OPTION = :WS:

The default is SQL.

Generating Indicator Structures
You can automatically generate indicator structures when generating corresponding host
language data structures.

To generate indicator structures as arrays, enter the following in your DB2 profile:

MPDY_INDICATOR_OPTION = :ARRAY:

To generate indicator structures as structures which match the main host structure, enter
the following in your DB2 profile:

MPDY_INDICATOR_OPTION = :STRUCTURE:

To return to the default (so that no indicator structures are generated), remove this
variable from the DB2 profile.

Note:
You can use the INDICATOR ARRAY and INDICATOR STRUCTURE keywords in
the DB2 PRODUCE command to similar effect.

Generating Indicator Suffixes on Structures
You can specify two-character suffixes to be placed after the names of generated
indicator variables, when indicator-option = :STRUCTURE:.

To specify a suffix, enter the following in your DB2 profile:

MPDY_INDICATOR_SUFFIX = :XX:

where XX represents any two alphanumeric characters. COBOL suffixes are generated as
-XX. PL1 suffixes are generated as _XX. Assembler language suffixes are generated as
#XX.

5 Export to DB2

119

For example, to specify a suffix of -DB (in COBOL), _DB (in PL1), or #DB (in Assembler
language), enter the following in your DB2 profile:

MPDY_INDICATOR_SUFFIX = :DB:

To stop any suffix being generated, enter the following in your DB2 profile:

MPDY_INDICATOR_SUFFIX = ::

Refer to the DB2 PRODUCE command in "DB2 PRODUCE" on page 267 for details of
generating indicator structures and host language data structures.

Setting Suffixes Applied to Indicator Array Names
The variables MPDY_IND_ARRAY_SUFF_1 and MPDY_IND_ARRAY_SUFF_2 can
now be set to user-defined suffixes for indicator arrays (previously possible for indicator
structures only). For COBOL these suffixes correspond to levels 1 and 10 of the array.
For PL/1 they correspond to levels 1 and 5 of the array. The defaults are:

MPDY_IND_ARRAY_SUFF_1 = :IS:
MPDY_IND_ARRAY_SUFF_2 = :IN:

If these variables are not set in the DB2 profile, or the profile is not executed, the same
default values will apply.

Setting Suffixes Applied to Variable-Length Column Names
The variables MPDY_COB_SUFF_I and MPDY_COB_SUFF_2 can now be set to
user-defined suffixes for the name generated when a column has a variable-length
definition. For COBOL these suffixes correspond to the first and second instance of level
49 in the host structure. The defaults are:

MPDY_COB_SUFF_1 = :L:
MPDY_COB_SUFF_2 = :D:

If these variables are not set in the DB2 profile, or the profile is not executed, the same
default values will apply.

Automatically Generating SQL COMMENT ON/LABEL ON Statements
You can tailor the output so that whenever an SQL CREATE statement is generated, SQL
COMMENT ON/LABEL ON statements are also generated automatically from the same
member, increasing processing speed.

To automatically generate SQL COMMENT ON statements, enter the following in your
DB2 profile:

MPDY_CM_COMMENTOPT = :ON:

 ASG-Manager Products Relational Technology Support: DB2

120

To automatically generate SQL LABEL ON statements, enter the following in your DB2
profile:

MPDY_CM_LABELOPT = :ON:

To generate SQL COMMENT ON or LABEL ON statements by themselves, use either
the DB2 COMMENT and DB2 LABEL commands or the relevant export panel. To
return to the default, in which SQL CREATE, COMMENT ON, and LABEL ON
statements are generated separately, either remove the relevant directives or alter them to
read:

MPDY_CM_COMMENTOPT = :OFF:
MPDY_CM_LABELOPT = :OFF:

Note:
You can use the WITH-LABELS and WITH-COMMENTS keywords in the DB2
CREATE command to similar effect for individual commands (overriding any setting in
the DB2 profile).

Refer to "DB2 COMMENT and DB2 LABEL" on page 200 for details of the DB2
COMMENT and DB2 LABEL commands, and "DB2 CREATE" on page 206 for details
of the CREATE command.

Generating One-, Two-, or Three-part Names for DB2 Objects
You can tailor output to produce one-, two-, or three-part names for DB2 objects when
generating output.

To produce one-part names for DB2 tables, views, aliases, indexes, and packages, enter
the following in your DB2 profile:

MPDY_CM_NAME_QUAL = 1

Note:
This does not apply to SQL GRANT and REVOKE statements generated.

To produce two-part names (the default), either remove the directive, or enter the
following in your DB2 profile:

MPDY_CM_NAME_QUAL = 2

5 Export to DB2

121

To produce three-part names (that is, names including a location) for DB2 tables and
views, enter the following in your DB2 profile:

MPDY_CM_NAME_QUAL = 3

Note:
You can usually override these settings for individual DB2 export functions, using the
SQLID and/or LOCATION keywords. However, if you set MPDY_CM_NAME_QUAL
to 1, this is not true for these member types:

Refer to Chapter 8, "Commands," on page 175 for details of export to DB2 commands.

Setting a Tolerance Level for Output
You can set the level of tolerance for writing output. Output with messages of a severity
below this level is accepted and written. Output with messages at or above this level is
not written.

Information (I) messages have a severity level of 0, Warning (W) messages 4, and Error
(E) messages 8. The default tolerance level is 8, which accepts I and W messages, but E
messages cause output not to be written.

To set the tolerance level, enter the following in your DB2 profile:

MPDY_CM_SENDF_THRESH = level

where level is the tolerance level.

Setting the SQL Escape Character
To alter the SQL escape character, enter the following in your DB2 profile:

MPDY_CM_SQL_ESCAPE = char

where char is the escape character you want. The default is a single quote (').

Keywords Specified Member Type performed on Result generated

LOCATION keyword
only

DB2-TABLE
DB2-VIEW

1-part name only.

LOCATION keyword
only

DB2-INDEX 1-part name for the index,
3-part name for the table

SQLID and
LOCATION keywords

DB2-INDEX 2-part name for the index,
3-part name for the table.

 ASG-Manager Products Relational Technology Support: DB2

122

Setting Width of Output for SQL COMMENT ON Statements
To set the standard left and right margins for SQL COMMENT ON output, enter the
following in your DB2 profile:

MPDY_CM_COMMENT_LM = left-margin

and

MPDY_CM_COMMENT_RM = right-margin

where:

left-margin is the value of the left margin. The default is 1.

right-margin is the value of the right margin. The default is 72.

Setting Width/Indent of the SQL DROP Impact Analysis Report
To set the standard width of this report, enter the following in your DB2 profile:

MPDY_CM_DR_WIDTH = width

where width is the value of the width. The default is 72.

To set the standard indent of this report, enter the following in your DB2 profile:

MPDY_CM_DR_INDENT = indent

where indent is the value of the indent. The default is 5.

Allowing an Optional Space Character when Generating SQL DECIMAL
Datatypes

You can tailor output to set generated SQL DECIMAL(n,m) datatypes to have a space
character after the comma. In other words, the datatypes could be of type SQL
DECIMAL(n, m).

To allow a space character, enter the following directive in your DB2 profile:

MPDY_CM_DCML_SPACE = 1

To return to the default, which does not allow a space character, either remove the
directive, or replace it by the following:

MPDY_CM_DCML_SPACE = 0

5 Export to DB2

123

Accessing a Specific DB2 Subsystem or Plan
When you initially establish access to a DB2 environment in a session, you can choose to
access a specified DB2 subsystem, and to use a specified plan. If you do not specify a
DB2 subsystem or plan, then the defaults for these are used. When you connect to a
subsystem, you cannot then re-connect to a different subsystem during the same session:
you must log off first.

To connect to a specific DB2 subsystem, enter the following in your DB2 profile:

MPDY_DB2SSN = :subsystem-name:

where subsystem-name is the name of the subsystem to connect to.

To specify a (non-default) plan for your current session, enter the following in your DB2
profile:

MPDY_PLANNAME = :plan-name:

where plan-name is the name of the plan.

Note:
MPDY_DB2SSN and MPDY_PLANNAME are both global variables.

Refer to your installation manual for further details of setting up access to a DB2
subsystem or plan.

Setting EXPORT Generated Object-name Length
You can tailor variables to stipulate the maximum length allowed for the object-name
generated during the DB2 export.

To set the maximum length of the object name generated during DB2 PRODUCE
COBOL FROM member-name:

MPDY_CM_COBLENGTH = :length:

The default for the above is 27.

To set the maximum length of the object name generated during DB2 PRODUCE
ASSEMBLER FROM member-name:

MPDY_CM_BALLENGTH = :length:

The default for the above is 8.

 ASG-Manager Products Relational Technology Support: DB2

124

To set the maximum length of the object name generated during DB2 PRODUCE PL1
FROM member-name:

MPDY_CM_PL1LENGTH = :length:

The default for the above is 28.

Setting the Generated Column Data Type
You can specify the data type of the column generated from an item with
form-description NUMERIC-CHAR. Valid options are DEC or CHAR.

To generate SQL columns with data type DECIMAL, enter the following in your DB2
profile:

MPDY_NUM_GEN = :DEC:

To generate SQL columns with date type CHAR, enter the following in your DB2 profile:

MPDY_NUM_GEN = :CHAR:

The default is DEC.

Creating an INSERT Statement for Stored Procedures

The default values of these variables are used if no explicit attributes exist in a
PROGRAM member type when a DB2 CREATE command program members for a DB2
Version 5.x system is executed. 2.5

Introduction to User Exits
User exits are set points in ASG-supplied software at which you can call user exit
routines. User exit routines are either Corporate or User executive routines. The process
of calling these routines at user exits is known as taking user exits.

You can use user exits to tailor output by attaching your own executive routines to
Manager Products, using the DB2 profile.

You can take user exits:

• To retrieve additional data when accessing a repository member. You can take this
type of user exit to alter the contents of the WBTA (an area of storage containing
command variables), by setting variables in the DB2 profile

• Every time you perform a specified DB2 export function (such as generating a
CREATE TABLE statement), by altering the DB2 profile to take a named exit for
that function

• For one DB2 export function.

5 Export to DB2

125

Refer to Chapter 8, "Commands," on page 175 for details of DB2 export commands.

Taking User Exits when Accessing a Repository Member
This facility has been replaced by that described in "Setting Specific User Exits to be
Taken" on page 126, but, to ensure full MIR3 compatibility, it will still operate.

When a repository member is being accessed by an export to DB2 function (via the
DACCESS command), you can cause your own user exit routine to retrieve extra data,
using the DRETRIEVE command. For example, you can obtain user defined attributes
held in a member.

To set a user exit to be taken whenever a member is being accessed, enter the following in
your DB2 profile:

MPDY_CM_OBJEXIT = :obj-exit:

where obj-exit is the name of a user exit routine.

The user exit is normally taken once for each member accessed. You can also take a user
exit for each column in the member. For example, if you access a DB2-TABLE,
containing three ITEMs documenting columns, you can take one exit for the
DB2-TABLE (as described above) and one exit for each ITEM.

To set a user exit to be taken for each GROUP or ITEM member representing a column of
a DB2 table, view, or index, enter the following in your DB2 profile:

MPDY_CM_COLEXIT = :col-exit:

where col-exit is the name of a user exit routine.

For this second type of user exit, the array index i (for the i'th column) is also passed to
the user exit routine called.

Note:
If a GROUP contained within a DB2-TABLE, DB2-VIEW, or DB2-INDEX generates
more than one column, the column exit is taken for each column within that GROUP.

When WBTA, OBJ, or COL are specified as type, then the variant required is DB2-
PRODUCE-TABLE and DB2-PRODUCE-VIEW. When OUT is the specified type, in
these two commands, then the above output variants should be used.

Taking User Exits For Specified DB2 Export Functions
You can set user exits to be taken for specific export to DB2 functions, using the
COMMAND member MPDY ADDXIT in your DB2 profile. You could modify output,
for example, to suit your installation standards.

 ASG-Manager Products Relational Technology Support: DB2

126

All export to DB2 functions send output to a specified destination (such as the screen, or
a USER-MEMBER on the MP-AID) via two buffers:

• The output buffer that contains the generated output itself.

• The messages buffer that contains associated messages.

The output buffer has pointers to the messages buffer.

In a user exit routine, you can access and manipulate both of these buffers, and all
command variables relevant to the specified function, before the contents of the buffers
are sent to their destination.

You can examine all these data structures, using the DB2 DEBUG command.

Refer to "Writing User Exit Routines" on page 128 for details of how to write exit
routines to take advantage of these data structures to tailor your output.

Setting Specific User Exits to be Taken
To set a user exit to be taken whenever a specific export to DB2 function is executed,
enter the following in your DB2 profile:

:MPDYADDXIT type variant routine:

where type is the type of export: WBTA, OUT, OBJ, or COL.

If WBTA is specified, then the exit is taken when the table column and constraint details
have all been retrieved from the members and loaded into the work bench arrays. The exit
is taken before any output processing occurs. There are no parameters passed.

If OBJ is specified, then the exit is taken when only the table details have been loaded,
before any column details are available to be tailored. The exit is taken once for each
member referred to via the AS clause. The parameter list is: MEMBERNAME.

If COL is specified, then the exit is called once as each column is Daccessed. The
parameter list is: COLUMN NUMBER DACCESS-RETURN-CODE.

If OUT is specified, then the exit is called each time a line is written. See "Writing User
Exit Routines" on page 128 for further details. The parameter list is: EXIT POINT LINE
NUMBER.

Variant specifies the type of export to DB2 function (for example, generation of SQL
ALTER INDEX statements). You can have an exit for each variant.

Routine is the name of the user exit routine you wish to call.

MPDYADDXIT is an ASG-supplied COMMAND member. This connects up your user
exit routine to the type of export to DB2 function specified.

5 Export to DB2

127

All variants have a starting prefix of DB2-. The second and successive elements of a
variant name specify the version of the export to DB2 function.

For example, the variant DB2-PRODVIE-COB-FOR-WS specifies that a user exit is to
be taken whenever you use the DB2 PRODUCE command on a DB2-VIEW member, to
generate a COBOL data structure for working-storage.

The names of the output variants are listed below.

DB2-ALTER-INDEX DB2-ALTER-STOGROUP
DB2-ALTER-TABLE DB2-ALTER-TBSPACE2.5
DB2-BIND-PACKAGE DB2-BIND-PLAN
DB2-COMMENT-ALIAS DB2-COMMENT-TABLE
DB2-COMMENT-VIEW DB2-CREATE-ALIAS
DB2-CREATE-DATABASE DB2-CREATE-INDEX
DB2-CREATE-STOGROUP DB2-CREATE-TABLE
DB2-CREATE-TBSPACE DB2-CREATE-VIEW
DB2-DECLARE-TABLE DB2-DECLARE-VIEW
DB2-DROP-ALIAS DB2-DROP-DATABASE
DB2-DROP-INDEX DB2-DROP-STOGROUP
DB2-DROP-TABLE DB2-DROP-TBSPACE
DB2-DROP-VIEW DB2-GRANT-REVOKE-PRIVILEGE
DB2-LABEL-ALIAS DB2-LABEL-TABLE
DB2-LABEL-VIEW DB2-RECALC-TABLE
DB2-RECALC-INDEX DB2-SIZE-TABLE
DB2-SIZE-INDEX DB2-SYNONYM

where type is specified as OUT

DB2-PRODTAB-BAL-FOR-SQL
DB2-PRODTAB-BAL-FOR-WSDB2-PRODTAB-COB-FOR-SQL
DB2-PRODTAB-COB-FOR-WSDB2-PRODTAB-PL1-FOR-SQL
DB2-PRODTAB-PL1-FOR-WSDB2-PRODTAB-TAB-FOR-SQL
DB2-PRODTAB-TAB-FOR-WSDB2-PRODUCE-TABLE
DB2-PRODVIE-BAL-FOR-SQL
DB2-PRODVIE-BAL-FOR-WS
DB2-PRODVIE-COB-FOR-SOL
DB2-PRODVIE-COB-FOR-WS
DB2-PRODVIE-PL1-FOR-SQL
DB2-PRODVIE-PL1-FQR-WS
DB2-PRODVIE-TAB-FOR-SOL
DB2-PRODVIE-TAB-FOR-WS

where type is specified as WBTA, OBJ, or COL

DB2-PRODUCE-TABLEDB2-PRODUCE-VIEW

 ASG-Manager Products Relational Technology Support: DB2

128

Writing User Exit Routines
User exit routines for export functions take two input arguments:

• The current exit point (the logical point in output processing from which user exit is
called)

• The current output line number; this is supplied for exit points 2 and 3.

User exits are taken at these exit points during output:

1 Before any lines are written, with the exit_point parameter set to 1.

2 Before line 1 is written, with exit_point set to 2. The line number is also passed to
the user exit as a parameter.

3 After line 1 is written, with exit_point set to 3. The line number is also passed to the
user exit as a parameter.

The user exit is then re-taken, repeating steps 2 and 3 (with exit_point set to 2 then 3
respectively) for each of the remaining lines.

� After all output lines are written.

You can access all command variables in your user exit routine.

These variables will be important to you:

Variable Description

MPDY_MAX_ERROR Set to 0, 4, 8, or 12 (for Information, Warning,
Error or Severe messages). This shows the
highest error level in the output buffer (or the
highest level so far, depending on when it is used
during execution).

MPDY_OUT_LINE (x) The contents of the current line (x is the current
line number, supplied as a parameter).

5 Export to DB2

129

You can examine these and other variables using the DB2 DEBUG command.

ASG supplies the example user exit routines MPDYl2OXCR, MPDY12OXPB,
MPDYl2OXPC, MPDYl2OXPP, and MPDYI2OXCV. We recommend that you examine
these routines before writing your own.

Taking User Exits for an Individual Export Function
You can take a user exit for an individual export to DB2 function.

For example, to take a user exit when generating an SQL CREATE TABLE statement for
the DB2-TABLE member TB-DJB-CUST, calling the user exit routine MPDY12OXCR,
enter:

DB2 CREATE TB-DJB-CUST USING MPDY120XCR ;

This method of taking user exits gives you more flexibility, although you have to call
each user exit routine each time you wish to use it.

These user exit routines are handled similarly to those set up by altering the DB2 profile
using the COMMAND member MPDYADDXIT. You should therefore write them in a
similar manner.

Refer to "Writing User Exit Routines" on page 128 for details of writing user exit
routines. Refer to Chapter 8, "Commands," on page 175 for details of export to DB2
commands.

MPDY_OUT_KEY (x) Specifies whether to print or suppress the current
line and associated messages. Can be set to 0, 1,
2, or 3:
0: suppress the current line and associated
messages
1: print output line, but suppress messages
2: print messages, but suppress output line
3: print both output line and messages (the
default)

MPDY_OUT_ SOURCE Shows the type of information held in the current
line. This is usually a prefix.

MPDY_OUT_SOURCE_OCC The occurrence within the data structure
described by MPDY_OUT_SOURCE from
which the output line was generated.

Variable Description

 ASG-Manager Products Relational Technology Support: DB2

130

131

6 6Dynamic Import/Export

This chapter includes these sections:

Security and Authorization . 133

Output . 133

Using Executive Routines with Dynamic SQL Functions 134
Variables Used for Dynamic Import/Export . 139
Control Variables . 139
Return Variables . 140
COMMAND and EXECUTIVE Members Used in Dynamic SQL Functions. 141
Creating and Populating a Table . 141
Inserting Rows into a Table . 142
Importing Information and Assigning it to Command Variables 144
Submitting Any SQL Statement that Can Be Prepared 146
Creating Your Own HELP Text . 147

You can submit SQL statements to your DB2 or SQL/DS environment and receive the
results, from within Manager Products, using dynamic SQL functions. These functions
are provided by the ISQL command or in executive routines.

To use dynamic SQL functions, you must have Manager Products and either DB2 or
SQL/DS available on the same CPU and operating system.

You can select a DB2 subsystem or plan to use when initially establishing access to your
DB2 environment.

Refer to "Setting Suffixes Applied to Indicator Array Names" on page 119 for details of
accessing a specific DB2 subsystem or plan.

You can submit any SQL statement which can be dynamically prepared for execution.
SQL SELECT statements must conform to the specifications of a full select statement.

For example, you can submit SQL statements generated by a previous Manager Products
DB2 or SQL command by using the ISQL command.

Refer to Chapter 8, "Commands," on page 175 for details of the ISQL and DB2
commands.

 ASG-Manager Products Relational Technology Support: DB2

132

You can also create executive routines using the Manager Products Procedures Language
to:

• Update your DB2 or SQL/DS environment with information held in the repository

• Import information from DB2 or SQL/DS into the repository

from within your Manager Products environment. Refer to "Using Executive Routines
with Dynamic SQL Functions" on page 134 for details of how to create these executive
routines.

Refer to the ASG-Manager Products Procedures Language manual for details of the
Procedures Language.

SQL statements can be submitted both interactively and in batch.

You therefore have a direct link between your relational environment and your Manager
Products environment.

Figure 25 illustrates the dynamic SQL functions.

Figure 25 • Dynamic SQL functions

RELATIONAL

ENVIRONMENT

MANAGER Products
ENVIRONMENT

REPOSITORY MP-AID

DB2 command

generated SQL

Executive Routines

generated SQL

ISQL command

result tables

SQLCODEs & HELP text

populated Procedures
Language variables

embedded SQL

SQL/HELP

returned

6 Dynamic Import/Export

133

Security and Authorization
The SQL statements you can submit using dynamic SQL functions are determined by the
privileges granted to your authorization ID in DB2 or SQL/DS. Your authorization ID is
your operating system logon in the environment in which DB2 or SQL/DS operates.

For example, if SQL/DS is operating in a VM environment, the authorization ID is the
CMS logon. For DB2 environments operating in a TSO environment, it is the TSO logon.

Output
Output varies depending on your relational environment, the method by which you are
submitting SQL statements, and whether or not the SQL statements are successful.

SQL statements submitted with an ISQL command are printed. SQL statements
submitted from within executive routines are not printed.

A result table is printed in response to a successful SQL SELECT statement submitted
with the ISQL command or from within an executive routine calling the COMMAND
member MPDYDSSSQL.

Result tables are not printed in response to successful SELECT statements submitted
from within an executive routine calling the COMMAND member MPDYDSSSEL.

You can limit the number of rows to be included in a result table by specifying an integer
in the ISQL command or by including the variable SQLLROWS in an executive routine.

If you do not specify a maximum number of rows then the number printed is determined
by the maximum number of lines of output that can be printed in any output buffer. The
maximum line limit does not affect result tables printed in response to SQL statements
submitted in batch. Use the QUERY OUTPUT-LINE-LIMIT command to find the
maximum line limit.

Refer to the ASG-ControlManager User’s Guide for details of the QUERY
OUTPUT-LINE-LIMIT command.

If a row in a result table cannot be printed on a single line on the current output device
then the row will wrap around to the next line. Each column in a result table is truncated
to a width of thirty characters unless the result table contains two or less columns in
which case the full width of columns is displayed.

A question mark (?) in a result table indicates that a value in a column is null or that the
value is of a data type that cannot be printed within the Manager Products environment.
You can display values with non-printable data types by specifying an SQL Scalar
Function in the SELECT statement in order to change the representation of the value.

 ASG-Manager Products Relational Technology Support: DB2

134

To display values with data types of TIME, TIMESTAMP, or DATE in a result table, you
must include a CHAR function in the SELECT statement. To display values with data
types of FLOAT in a result table you must include a DECIMAL function in the SELECT
statement.

Commas are, where appropriate, included in values having an INTEGER data type when
the value is displayed in a result table.

You can create an executive routine which generates result tables in a format which suits
your environment by calling the COMMAND member MPDYDSSSQL and using the
Procedures Language to tailor the output it returns.

A DB2 or SQL/DS SQLCODE is displayed in response to any unsuccessful SQL
statements you have submitted. SQL/DS SQLCODEs are followed by explanatory
SQL/DS HELP text. DB2 SQLCODES are not followed by HELP text.

The systems administrator can create HELP text for both DB2 and SQL/DS which suits
your own environment by tailoring the EXECUTIVE member MPDYDSSXIT. Tailored
HELP text is only displayed in response to SQL statements submitted from within an
executive routine.

The systems administrator can also specify the DB2 subsystem to be connected to when
initially accessing DB2, and the plan to use.

Refer to "COMMAND and EXECUTIVE Members Used in Dynamic SQL Functions"
on page 141 for details of the COMMAND and EXECUTIVE members provided by
dynamic SQL functions.

Using Executive Routines with Dynamic SQL Functions
You can create executive routines which dynamically submit embedded SQL statements
to your DB2 or SQL/DS environment.

By combining SQL statements and the Manager Products Procedures Language you can
create executive routines which can:

• Create and populate a new table

• Insert rows into an existing table

• Import information from tables and views into the Manager Products environment

• Submit any SQL statement that can be dynamically prepared for execution

The different executive routines carrying out these tasks must call particular
COMMAND and EXECUTIVE members and contain particular Procedures Language
command variables.

6 Dynamic Import/Export

135

The command variables contain the information transferred between Manager Products
and your relational environment by the executive routine.

When creating and populating a new table, or inserting rows into an existing table, the
command variables define the objects to be created. For example, a variable could define
a column and the values assigned to the different elements of the variable would define
the values in the column. You can use the DACCESS and DRETRIEVE commands to
assign information filed in the repository to the variables.

When importing information into the Manager Products environment the information
about a particular object is assigned to the relevant variable. You can use the Procedures
Language to manipulate the imported information. For example, you can generate result
tables and display them in your own format.

By tailoring the EXECUTIVE member MPDYDSSXIT the systems administrator can
create HELP text which is printed in response to the SQL statements you have submitted
from within an executive routine.

Refer to the ASG-Manager Products Procedures Language manual for details of the
DACCESS and DRETRIEVE commands.

Variables and the Column and Row Structure of Tables and Views
Each column in a table or view is represented within an executive routine by a command
variable. command variables are arrays, with a maximum of 60,000 separate array
elements. Each element represents a value in the column.

For example, three command variables named VI, V2, and V3, each having three
elements, could represent a table with three columns and rows as follows:

If the command variables in an executive routine used to create or insert rows into a table
each have different numbers of elements, then the number of rows in the table will equal
the array with the maximum number of elements, and null values are entered in those
columns for which no element was specified.

Command Variables: Table:

V1 V2 V3

V1(1)
value

V2(1)
value

V3(1)
value

value valu
e

value

V1(2)
value

V2(2)
value

V3(2)
value

value valu
e

value

V1(3)
value

V2(3)
value

V3(3)
value

value valu
e

value

 ASG-Manager Products Relational Technology Support: DB2

136

For example, the command variables V1, V2, and V3 (V1 having three elements, V2 two
elements, and V3 one element) could be used to create a table with three columns and
rows as follows:

You can import result tables from SQL SELECT statements. The values in columns are
assigned to command variables which you can name. As many elements are created for
these variables as are required to contain all the values in a column. Null values are
assigned to command variables as undefined (null) values.

For example, information from a table with null values would be assigned to the elements
of the command variables V1, V2, and V3 as follows:

How to Define the Data Type and Values of Columns
You can create executive routines which create and populate, or insert rows into, a table.

The columns in a table are defined within the executive routine by command variables.
The values within the column are defined by the values assigned to the different elements
of the Procedures Language command variable. The data type of the column is
determined by the value assigned to the first element of the command variable.

Command Variables: Table:

V1 V2 V3

V1(1)
value

V2(1)
value

V3(1)
value

value valu
e

value

V1(2)
value

V2(2)
value

value valu
e

null

V1(3)
value

value null null

Command Variables: Table:

V1 V2 V3

V1(1)
value

V2(1)
value

V3(1)
value

value valu
e

value

V1(2)
value

V2(2) null V3(2)
value

value null value

V1(3)
value

V2(3)
value

V3(3) null value valu
e

null

6 Dynamic Import/Export

137

Command variables can only be assigned a numeric or character value. Character values
include alphanumeric strings. A column is defined as having an INTEGER data type if
the first element of the variable is assigned a numeric value or if it is not assigned any
value. A column is defined as having a VARCHAR 254 data type if the first element of
the variable is assigned a character value.

For example, you could define two columns and the values they contain by including the
following variables and directives in an executive routine:

COMMAND AREA
COMMAND QTY
AREA(1) = NORTH
AREA(2) = SOUTH
QTY(2) = 550

The first column would be called AREA and have a data type of VARCHAR(254). The
column would contain the two character values NORTH and SOUTH.

The second column would be called QTY and have a data type of INTEGER. The column
would contain two values, the first of which is null and second of which has a numeric
value of 550.

If the first value in a column is null it can only be followed by numeric values. The
column is defined as having a data type of INTEGER.

Character values cannot be entered in a column which has been defined as having a data
type of INTEGER. The character value and any subsequent values are not entered in the
table.

A numeric value entered in a column which has been defined as having a data type of
VARCHAR(254) is treated as a character value and is prefixed with zeros. Subsequent
values are entered in the table.

Command variables can be assigned character values that are a maximum of 255
characters long. Character values are, if necessary, truncated to 254 characters when
entered in a column having a data type of VARCHAR(254).

To create or insert rows into tables with columns having data types other than INTEGER
or VARCHAR(254) you can either use the ISQL command with appropriate SQL
commands (for example, CREATE TABLE), or create an executive routine calling the
COMMAND member MPDYDSSSQL.

 ASG-Manager Products Relational Technology Support: DB2

138

Importing Information from Columns with Particular Data Types
You can create an executive routine to import information from tables and views into the
Manager Products environment. The values in each column are assigned to command
variables as Procedures Language values. Command variables can be assigned numeric
or character values. Numeric values can have a maximum value of 2,147,483,647 and a
minimum value of -2,147,483,648. Character values can be a maximum of 255 characters
long.

Only information that can be assigned to a variable as a character or numeric value can be
imported. For example, the values in columns with data types of GRAPHIC,
VARGRAPHIC, or LONG VARGRAPHIC cannot be imported.

Information cannot be imported from columns with a data type of TIME, TIMESTAMP,
or DATE unless you use the SQL CHAR function to obtain a character representation of
the value.

Information cannot be imported from columns with a data type of FLOAT unless you use
the SQL DECIMAL function to obtain a numeric representation of the value.

Values in columns with a data type of VARCHAR or LONG VARCHAR are, if
necessary, truncated to 255 characters.

Values in columns with a data type of FLOAT or DECIMAL are, if necessary, truncated
after the decimal point:

Table 18 Column Data Types and Procedures Language Values

Column Data Type Procedures Language Value

TIME CHARACTER (using the CHAR function)

TIMESTAMP CHARACTER (using the CHAR function)
DATE CHARACTER (using the CHAR function)
GRAPHIC(n) Not supported
VARGRAPHIC(n) Not supported
LONG VARGRAPHIC(n) Not supported

CHAR(n) CHARACTER

VARCHAR(n) CHARACTER

LONG VARCHAR CHARACTER

SMALLINT NUMERIC

INTEGER NUMERIC

FLOAT(n) NUMERIC (using the DECIMAL function)

6 Dynamic Import/Export

139

The above table shows the type of value which the information in columns is given when
assigned to Manager Products Procedures Language command variables.

Variables Used for Dynamic Import/Export
Command variables contain the information that is transferred between Manager
Products and your relational environment by the executive routines you have created. The
variables can be divided into control variables and return variables.

Control variables. Command variables which are specified in executive routines. For
example, the SQLI_ COMMAND variable specifies the SQL statements to be submitted.

Return variables. Command variables which are not specified in executive routines
but are generated by dynamic SQL functions in response to the SQL statements you have
submitted. For example, the SQLI_ CODE(1) variable which contains the SQLCODE
number returned from your relational environment.

Control Variables
SQLI_COMMAND defines the SQL statement you want to submit. You must specify
additional elements of the variable if you need to continue the statement. Statements
defined in the additional elements must start with a space otherwise the whole statement
will concatenate and be rejected by DB2 or SQL/DS.

If you repeat the SQLI_COMMAND variable in an executive routine you must ensure
that you have no unwanted data still set from a previous use of the command variable. For
example, if the first SQL statement you submit uses three elements of the
SQLI_COMMAND variable but the second SQL statement only uses two elements, you
must set the third element to null. The easiest way to do this is to drop
SQLI_COMMAND and re-declare it before use.

SQLI_TABLE_SPACE defines the name of the DB2 table space or SQL/DS dbspace in
which a table you want to create will be stored. The dbspace or table space must already
exist.

DECIMAL(n,m) NUMERIC

BLOB/CLOB/DBCLOB (n)2.5 CHARACTER

ROWID2.5 CHARACTER USAGE ROWID

Table 18 Column Data Types and Procedures Language Values

Column Data Type Procedures Language Value

 ASG-Manager Products Relational Technology Support: DB2

140

SQLI_TABLE_NAME defines the name of a table. The table name can be qualified or
unqualified. DB2 or SQL/DS adds an implicit qualifier if it is unqualified. The implicit
qualifier will be your logon in the environment in which DB2 or SQL/DS operates. If you
are creating and populating a new table then a table of the same name must not already
exist. If you are inserting rows in an existing table then the table must exist.

SQLI_ROWS defines the maximum number of rows to which the executive routine will
be applied. For example, the number of.rows to be displayed in a result table or the
number of rows to be populated or inserted into a table. The limit overrides the number of
rows in the result table or the number of elements in the command variables defining the
rows to be populated or inserted.

When creating tables or inserting rows into a table you must specify command variables
naming the columns in the table. When importing information from tables and views you
can name command variables to which the imported information will be assigned.

Return Variables
SQLI_CD_n (n is the number or the column) contains the values in the columns from
which you have imported information. This is generated as a default if you have not
named the variables to which the information is to be assigned.

SQLI_CS contains the maximum size of the columns from which you have imported
information. The size is calculated in bytes. The maximum size is either the column name
or the largest value in the column, whichever is greater.

SQLI_CL contains the names of the columns from which you have imported information.

SQLI_RETURN contains the Manager Products code returned by dynamic SQL
functions. The return code is the same as the number of the Manager Products message it
generates.

SQLI_SQLCODE(1) contains the SQL/DS or DB2 SQLCODE returned from your
relational environment via the SQL Communication Area (SQLCA).

SQLI_SQLCODE(2) contains the SQL/DS or DB2 SQLERRM returned from your
relational environment via the SQL Communication Area (SQLCA).

The SQLI_RETURN, SQLI_CODE(1), and SQLI_CODE(2) variables are examined by
the EXECUTIVE member MPDYDSSXIT which you can tailor to generate HELP text to
suit your environment, or perform additional checking.

6 Dynamic Import/Export

141

COMMAND and EXECUTIVE Members Used in Dynamic SQL Functions
These COMMAND and EXECUTIVE members must be called from the executive
routines with which you submit embedded SQL statements to your DB2 or SQL/DS
environment.

• MPDYDSSCRT: creating and populating a table

• MPDYDSSINS: inserting rows into a table

• MPDYDSSSEL: importing information and assigning it to Procedures Language
variables

• MPDYDSSSQL: submitting any SQL statement that can be dynamically prepared
for execution

• MPDYDSSXIT: displaying SQLCODEs and SQLERRMs.

Creating and Populating a Table
You can create an executive routine which creates a table and specifies the DB2 table
space or SQL/DS dbspace it is stored in, the names of its columns, the number of rows it
contains, and the values within each column.

The executive routine must call the COMMAND member MPDYDSSCRT to create and
populate the table, the EXECUTIVE member MPDYDSSXIT to display any
SQLCODEs and HELP text returned from your relational environment, and must contain
the command variables SQLI_TABLE_ NAME, SQLI_TABLE_ SPACE, and those
variables defining the columns in the table.

The executive routine can also optionally contain the command variable SQLI_ROWS,
and those directives defining the values in the columns.

The called COMMAND member MPDYDSSCRT must be followed in the executive
routine by the names of the columns you have defined. The call must be enclosed in
literal delimiters.

By specifying DACCESS and DRETRIEVE commands in the executive routine you can
populate the table with information filed in members in the repository.

For example, to create a table named SALES stored in a table space or dbspace named
COMPANY and containing the following columns and rows:

AREA CATALOGUE_NAME QTY

NORTH D35 null

SOUTH D36 5500

 ASG-Manager Products Relational Technology Support: DB2

142

enter the executive routine in Figure 26:

Figure 26 • Example Executive Routine to Create and Populate a Table

MPXX LITERAL=:
/*___
/* Example Executive Routine to create & populate a table.
/*___
/* Naming the table and dbspace or table space.
/*___
COMMAND SQLI_TABLE_NAME
COMMAND SQLI_TABLE_SPACE
SQLI_TABLE_NAME = :SALES:
SQLI_TABLE_SPACE = :COMPANY:
/*___
/* Specifying the number of rows to be created in the table
/*___
COMMAND SQLI_ROWS
SQLI_ROWS = 2
/*___
/* Naming the columns.
/*___
COMMAND CATALOGUE_NAME
COMMAND QTY
COMMAND AREA
/*___
/* Populating the columns.
/*___
DACCESS MEMBER :GROUP-SALES-NS:;
DRETRIEVE ALL ALIAS;
DRETRIEVE ALL CATALOGUE;
QTY(2) = :5500:
AREA() = ALIAS_NAME
/*___
/* Call COMMAND member MPDYDSSCRT, EXECUTIVE member MPDYDSSXIT.
/*__
MPDYDSSCRT :AREA: :CATALOGUE_NAME: :QTY: ;
MPDYDSSXIT;
/*___
/* Either exit or create and populate another table.
/*___
EXIT

Inserting Rows into a Table
You can create an executive routine which inserts rows into a table. This executive
routine must call:

• The COMMAND member MPDYDSSINS to insert rows into the table, followed in
the executive routine by the names of the columns in the table into which you are
inserting rows. Enclose the call in literal delimiters.

• The EXECUTIVE member MPDYDSSXIT to display any SQLCODEs and HELP
text returned from your relational environment,

6 Dynamic Import/Export

143

and must contain the command variables SQL_TABLE_NAME,
SQLI_TABLE_SPACE, and those variables and directives giving the names of the
columns and defining the rows to be inserted. Also, the executive routine can optionally
contain the command variable SQLI_ROWS.

By specifying DACCESS and DRETRIEVE commands in the executive routine you can
insert information filed in members in the repository into the table.

For example, enter the executive routine in Figure 27 to insert the third and fourth rows
into the table below (SALES):

Figure 27 • Example Executive Routine to Insert Rows in a Table

MPXX LITERAL=:
/* Example Executive Routine to insert rows into a table.
/* Naming the table and table space or dbspace.
/*
COMMAND SQLI_TABLE_NAME
COMMAND SQLI_TABLE_SPACE
SQLI_TABLE_NAME = :SALES:
SQLI_TABLE_SPACE = :COMPANY:
/*___
/* Specifying the number of rows to be inserted.
/*___
COMMAND SQLI_ROWS
SQLI_ROWS = 2
/*___
/* Specifying the column names.
/*___
COMMAND AREA
COMMAND CATALOGUE_NAME
COMMAND QTY
/*___
/* Defining the rows to be inserted.
/*___
DACCESS MEMBER :GROUP-SALES-EW:;
DRETRIEVE ALL ALIAS;
AREA() = ALIAS_ NAME
CATALOGUE_NAME(2) = D37
/* Call COMMAND member MPDYDSSINS and EXECUTIVE member MPDYDSSXIT.
MPDYDSSINS :AREA: :CATALOGUE_NAME: :QTY: ;
MPDYDSSXIT;
/* Either exit or insert rows into another table.
EXIT

AREA CATALOGUE_NAME QTY

NORTH D35 null

SOUTH D36 5500

EAST null null

WEST D37 null

 ASG-Manager Products Relational Technology Support: DB2

144

Importing Information and Assigning it to Command Variables
You can create an executive routine which imports information from tables and views
and assigns it to Procedures Language command variables.

The executive routine must call:

• The COMMAND member MPDYDSSSEL to import the information

• The EXECUTIVE member MPDYDSSXIT to display any SQLCODEs and HELP
text returned from your relational environment

and contain the command variable:

• SQLI_COMMAND

and can optionally contain:

• The command variable SQLl_ROWS

• The names of the command variables to which the imported column values will be
assigned.

If you do not name the variables to which column values are to be assigned, they are
given the default name SQLI_CD_n where n is the number of the column.

The called COMMAND member MPDYDSSSEL must be followed in the executive
routine by the names of the command variables you have named. The call must be
enclosed in literal delimiters. You do not need to specify the default names if you have
not named any variables.

The executive routine submits your SQL SELECT statements to your relational
environment. The result of the SELECT statement is used to populate command
variables. Because you can submit any SELECT statement which conforms to the
specifications of a full select statement, you can import information from several tables,
views, and expressions. For example, you can include in the SELECT statement, joins
from several tables, and views, scalar functions and other operators such as UNIONs and
ORDER BY.

You can manipulate the information assigned to the command variables by using the
Manager Products Procedures Language. For example, you can generate result tables in a
format which suits your environment.

For example, to import information about a table named SALES and then display the
information in the following format:

AREA CATALOGUE_NAME QTY
NORTH D35
SOUTH D36 5500

enter the executive routine in Figure 28:

6 Dynamic Import/Export

145

Figure 28 • Example Executive Routine for Importing Information and Assigning it to Command
Variables

MPXX LITERAL=:
/*___
/* Example Executive Routine for importing information and assigning it
/* to Command Variables.
/*___
/* Naming the variables to which the information is to be assigned.
/*___
COMMAND AREA
COMMAND CATALOGUE_NAME
COMMAND QTY
/*___
/* Specifying the number of rows of information to be imported.
/*___
COMMAND SQLI_ROWS
SQLI_ROWS = 2
/*___
/* Specifying the SELECT statement.
/*___
DROP SQLI_COMMAND
COMMAND SQLI_COMMAND
SQLI_COMMAND(1) = :SELECT AREA, CATALOGUE_NAME, QTY:
SQLI_COMMAND(2) = :FROM SALES:
/*___
/* Call COMMAND member MPDYDSSSEL.
/*___
MPDYDSSSEL :AREA: :CATALOGUE_NAME: :QTY: ;
/*___
/* Call EXECUTIVE member MPDYDSSXIT and exit.
/*___
MPDYDSSXIT ;
IF SQLI_RETURN = 0 THEN GOTO NOERRORS
EXIT
-NOERRORS
/*___
/* Display the result table according to our specs:
/*___
LOCAL 1
DO AREA()
 I = FDO(:DARRAY:)
 SAY LEFT(AREA(I),SQLI_CS(1)) -
 LEFT(CATALOGUE_NAME(I),SQLI_CS(2)) -
 LEFT (QTY(I),SQLI_CS(3))
END
EXIT

 ASG-Manager Products Relational Technology Support: DB2

146

Submitting Any SQL Statement that Can Be Prepared
You can create an executive routine which submits to your relational environment any
SQL statement that can be dynamically prepared for execution.

The executive routine must call:

• The COMMAND member MPDYDSSSQL to submit the SQL statement

• The EXECUTIVE member MPDYDSSXIT to display any SQLCODEs and HELP
text returned from your relational environment

and contain the command variable:

• SQLI_COMMAND

and can optionally contain the command variable:

• SQLI_ROWS.

Because you do not have to define columns with command variables you can submit SQL
statements to tables having columns of any data type. For example, you can insert rows
into tables having columns with data types other than INTEGER or VARCHAR(254).

For example, to add a column named DELIVERY with a data type of DATE to a table
named SALES, enter the executive routine in Figure 29:

Figure 29 • Example Executive Routine to Generate any SQL Statement That Can be Prepared

MPXX LITERAL=:
/*___
/* Example Executive Routine to generate any SQL statement that can be prepared.
/*___
/* Specifying the SQL statement.
/*___
DROP SQLI_COMMAND
COMMAND SQLI_COMMAND
SQLI_COMMAND(1) = :ALTER TABLE SALES:
SQLI_COMMAND(2) = : ADD DELIVERY DATE:
/*___
/* Call COMMAND member MPDYDSSSQL.
/*___
MPDYDSSSQL ;
/*___
/* Call EXECUTIVE member MPDYDSSXIT.
/*___
MPDYDSSXIT ;
/*___
/* Either exit or submit another SQL statement.
/*___
EXIT

6 Dynamic Import/Export

147

Creating Your Own HELP Text
DB2 or SQL/DS SQLCODEs are printed in response to any unsuccessful SQL statements
you have submitted to your relational environment. SQL/DS SQLCODEs are followed
by explanatory HELP text. DB2 SQLCODEs are not followed by explanatory HELP text.

By tailoring the EXECUTIVE member MPDYDSSXIT you can specify the HELP text to
be displayed in response to each SQLCODE number and so create your own HELP text
to suit your own environment.

For example, if you were to include the following Procedures Language directive in the
member MPDYDSSXIT:

IF SQLI_CODE(1) = -204 THEN SAY SQL_CODE(2) :NOT FOUND:

then the HELP text, variable-name NOT FOUND, would be displayed in response to the
SQLCODE number -204.

In the above example, variable-name is a name DB2 or SQL/DS has returned with the
SQLCODE -204.

You can also make the member MPDYDSSXIT carry out additional checks in response
to particular SQLCODES. For example, by embedding SQL SELECT statements in the
member you could respond to a - 204 SQLCODE by carrying out further interrogations of
your relational environment.

The HELP text you have created is not displayed in response to SQL statements
submitted with the ISQL command. You can find out what the predefined SQL/DS HELP
text is by entering an ISQL command including the HELP keyword.

 ASG-Manager Products Relational Technology Support: DB2

148

149

7 7Importing From DB2

This chapter includes these sections:

Introduction . 149
Naming Guidelines . 152
Documenting Columns . 155

Tailoring Import . 157
Tailorable Corporate Executive Routines . 158
Global Variables Used in the Import Commands . 160

Introduction
You can import information about DB2 objects from the DB2 catalog into the Manager
Products environment, using import from DB2 functions. These functions are provided
by the import from DB2 panels (menu I31000) or the EXTRACT, RECONCILE,
PREVIEW, and POPULATE commands.

DB2 controls access to the information in the catalog. To import information into your
Manager Products environment:

• You must have DB2 on the same CPU and running under the same operating
system as Manager Products

• Your environment must have access to the DB2 catalog.

Note:
When initially establishing access to your DB2 environment, you can choose a specific
DB2 subsystem or plan for your current session.

Refer to "Setting Suffixes Applied to Indicator Array Names" on page 119 for details of
accessing a specific DB2 subsystem or plan.

When extracting (see below) from DB2, you can name the creator-owner of the DB2
object you are importing. If you do not specify the creator-owner, your Manager Products
Logon Identifier becomes the default.

 ASG-Manager Products Relational Technology Support: DB2

150

Importing information from DB2 is in four stages:

Extract. Imports information from the DB2 catalog into Procedures Language Global
Variables in the WorkBench Translation Area (WBTA).

Reconcile. Generates proposed member names and types for the DB2 objects, and
compares these names and types with any members with matching names and types that
exist on the repository. The proposed names include a prefix identifying the type of
object they document and, for some types of object, the authorization ID of the object’s
owner and the database it is stored in.

Preview. Generates complete proposed member definitions and allows the user to
inspect them. These members are of the member types provided by DB2 Definition
functions. For example, DB2-TABLE members document tables imported from DB2,
ITEM members document columns and their data types, MODULE members document
DBRMs, and so on.

Populate. Updates the repository with the proposed member definitions.

Refer to the table below for details of the objects that you can import and the default
member types and proposed names they are given in the repository.

The systems administrator can tailor the way proposed members are generated from the
information on the WBTA. For example, proposed members can be given names and
member types which suit your repository standards.

If you import information about an object, information about objects directly related to
that object may also be imported. The proposed members documenting the objects will
contain attributes defining their relationships to each other.

Manager Products users who have not already documented their DB2 environment in the
repository can therefore do so in a short amount of time. Users who have already
documented their DB2 environment in the repository can reconcile their existing member
definitions with the objects in DB2, to ensure that their documentation is both accurate
and complete.

Having documented your DB2 environment in the repository you can use the functions
provided by Manager Products to analyze, enhance and maintain that environment:

Table 19 Default Repository Member Types and Names of Imported Objects

DB2 Object Member Type Member Name

ALIAS DB2-ALIAS AL-owner-name

COLUMN ITEM IT-name
DATABASE DB2-DATABASE DB-name
DBRM MODULE MO- name

7 Importing From DB2

151

where:

name is the name of the object on the DB2 catalog

owner is the DB2 authorization ID of the owner of the object

database is the name of the database in which a table space is stored.

Refer to the ASG-Manager Products Procedures Language manual for details of Global
Variables.

EDIT PROCEDURE MODULE MO-name
FIELD PROCEDURE MODULE MO-name

INDEX DB2-INDEX IX-owner-name

OWNER DB2-USER US-name

LOCATION DB2-LOCATION LN-name
PLAN DB2-PLAN PL-name

STORAGE GROUP DB2-STOGROUP SG-name

TABLE DB2-TABLE TB-owner-name

TABLE SPACE DB2-TBSPACE TS-database-name

VALIDATION
PROCEDURE

MODULE MO-name

VIEW DB2-VIEW VW-owner-name

PACKAGE DB2-PACKAGE PK-name

COLLECTION DB2-COLLECTION CL-name

PROCEDURE2.5 DB2-PROCEDURE PX-owner-name

FUNCTION2.5 DB2-PROCEDURE PX-owner-name

TRIGGER2.5 DB2-TRIGGER TG-name

DISTINCT TYPE2.5 ITEM IT-name

ALIAS SQL 'name'

Table 19 Default Repository Member Types and Names of Imported Objects

DB2 Object Member Type Member Name

 ASG-Manager Products Relational Technology Support: DB2

152

Figure 30 illustrates how information is imported into the Manager Products
environment.

Figure 30 • How Information is Imported

Naming Guidelines
You can use the information imported about objects in your relational environment to
generate proposed members. Different types of object are documented in particular types
of member.

EXTRACT RECONCILE PREVIEW POPULATE

RADD

RIGN

RREN

RREP

RUPD

r
e
p
o
r
t

C
A
T
A
L
O
G

W

B

T

A

R
E
P
O
S
I
T
O
R
Y

TRANSLATION
AND NAMING
RULES

LAYOUT MEMBER
DEFINITION
STATEMENTS

MPAID

RULES

7 Importing From DB2

153

Proposed names are given to the members documenting the external objects. The name of
the member is made up of:

• A prefix identifying the member and object type

• For certain types of object, the authorization ID of the owner of the object in your
relational environment

• For table spaces, the database they are stored in

• The name of the object on the catalog

Each part of the member name is separated by a hyphen.

For example, a proposed member documenting a DB2 table is named TB-owner-name.

Refer to the table below for details of the default naming rules for proposed members
documenting imported objects.

The name of the objects as held on the catalog (excluding the authorization ID) is entered
in the ALIAS attribute of proposed members. The names of columns as held on the
catalog are entered in the KNOWN-AS attributes of proposed members documenting
tables.

Underscores in the names of external objects are converted into hyphens when
information is imported from the object.

You can rename proposed members using the RECONCILE and RREN commands, or
the import from DB2 panels.

You must delimit proposed member names containing characters from the Manager
Products extended character set or you will be unable to enter the member’s definition
into the repository. To find out which characters you can use to delimit member names,
use the QUERY STRING-DELIMITER command.

Refer to the ASG-ControlManager User’s Guide for details of the Manager Products
character set and the QUERY command.

If you have already documented your relational environment in the repository, you
should ensure that the proposed member’s names comply with your existing naming
standards.

You cannot accurately reconcile proposed members documenting external objects with
existing repository members if the proposed member’s names do not comply with your
naming standards.

During reconciliation a report comparing the proposed members with any existing
repository members which have the same name is displayed.

 ASG-Manager Products Relational Technology Support: DB2

154

If reconciliation is inaccurate, objects in your relational environment may be documented
in more than one repository member, and the one-to-one correspondence between
external objects and repository members may be lost.

There are several points about naming standards to consider, if you have previously
created the objects in your relational environment by exporting from repository members.

While you can document a column in a GROUP member, imported information about
columns are automatically documented in an ITEMs, which have their own default
naming prefix. Imported information therefore may not be reconciled with any existing
GROUP members documenting the same columns.

When exporting an object, if the object name was generated:

• From the ALIAS or KNOWN-AS attribute of a member

• From a member name longer than that allowed in your relational environment, that
was reduced in length by the Name Reduction Process

• Using name editing options

• With an altered creator-owner or location prefix

then, on import, its name will not match the name of the repository member documenting
that object. In this case, imported information is not reconciled with the original member.

Refer to Appendix A, "Name Reduction Process," on page 467 for details of the Name
Reduction Process.

Refer to Chapter 8, "Commands," on page 175 for details of name editing options, and
altering the creator-owner or location prefixes.

There are ways of avoiding these problems:

• You can define alternative naming rules which suit your naming standards, for
example, to create your own naming prefixes.

• You can tailor interrogation of the repository carried out during reconciliation. For
example, if it is your naming standard to generate object names from ALIAS or
KNOWN-AS attributes you can use WHOSE ALIAS IS or WHICH HAVE
KNOWN-AS commands during reconciliation, to find out if there is an existing
member documenting an object. This approach is only effective if you have, as a
repository standard, entered unique names in all ALIAS or KNOWN-AS attributes.

• For tables or views, you can specify the full name of repository members (if they do
not exceed 30 characters) as the labels of external objects when generating SQL
statements for these objects. Labels are not altered by any changes to generated data
names, so you can reconcile an object’s label with its repository member name
when you re-import.

7 Importing From DB2

155

Refer to "Tailorable Corporate Executive Routines" on page 158 for details of how to
define your own naming rules.

Imported View Column Naming
In the case of column names derived from imported views, there are occasions where the
column name must be derived according to its context. This will typically be where an
expression is involved, in which case the repository name for the column is derived
according to the data type of the result. A suffix of -EXP is also applied in this case to
signify that the name has been derived from an expression. So, for example, a column
defined as SUM(SALARY) may result in an extracted column definition of
IT-INTEGER-EXP.

There are also two special cases where IMPORT assigns names for VIEW columns.
These are:

• Generic selection of all columns

• Columns that are unnamed.

In these cases it is possible to tailor assigned member names in the corporate executive
routine MPDY42DFLT by setting variables:

Documenting Columns
ITEM repository members document imported information about columns in your
relational environment.

The form-description and USAGE attribute of the ITEM member documents the data
type of a column. The default ITEM form-keyword is HELD-AS.

Refer to the table below for details about documenting column data types.

You can document columns in GROUP members, but imported information about
columns is always documented in ITEM members.

The systems administrator can tailor how columns and their data types are documented in
the repository. Refer to "Tailorable Corporate Executive Routines" on page 158 for
details of tailoring how columns are documented.

Variable Description

MPDY_UNNAMED_COLUMN_NA
ME

Defines a name to be applied where none is
found when importing a view.

MPDY_GENERIC_SELECT_NAME Defines a name to apply for the asterisk
expression (*) in a view.

 ASG-Manager Products Relational Technology Support: DB2

156

The following table shows how the data type of a column is documented in the
form-description and USAGE attribute of ITEM members:

where n is an integer.

A column data type of DECIMAL(n,m) means a total of n digits and m decimal digits.
This converts to a form-description expressed with the number of digits to the left of the
decimal point (n-m) followed by a period, followed by m. For example, a column with a
data type of DECIMAL(5,3) is documented in a form-description attribute as
PACKED-DECIMAL 2.3.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
ITEM form-description and USAGE attributes.

Table 20 Documenting the Data Type of Imported Columns

Column Data Type Form-Description USAGE Attribute

TIME CHARACTER 8 TIME

DATE CHARACTER 10 DATE

TIMESTAMP CHARACTER 26 TIMESTAMP

GRAPHIC(n) CHARACTER n GRAPHIC

VARGRAPHIC(n) CHARACTER 1 TO n GRAPHIC

LONG VARGRAPHIC CHARACTER 16383 GRAPHIC
SMALLINT BINARY 4 none

INTEGER BINARY 9 none

FLOAT(n)
n = 1. .21

FLOATING-POINT 6 none

FLOAT(n)
n = 22. .53

FLOATING-POINT 16 none

DECIMAL(n,m) PACKED DECIMAL
(n-m.m)

none

CHARACTER(n) CHARACTER n none

VARCHAR(n) CHARACTER 1 TO n none

LONG VARCHAR CHARACTER 32767 none

BLOB/CLOD/DBCLOB2.5 CHARACTER n [K|M|G] BLOB/CLOB/DBCLOB

ROWID2.5 CHARACTER n ROWID

7 Importing From DB2

157

Tailoring Import
The four stages in the import process are: extract, reconcile, preview, and populate. Refer
to "Introduction" on page 149 for details of these stages.

You can tailor the reconcile and preview stages, to customize imported information to
suit your own purposes and environment. You can tailor reconcile to change the way in
which extracted information is compared with information already present in your
repository. You can tailor preview to generate proposed members in a form that suits your
environment. For example, you can omit the ALIAS attribute from members.

Note:
You can also tailor some aspects of the import process at installation time. Refer to the
information about Manager Products and external environments in your Manager
Products installation manual.

Both the reconcile and preview stages call a series of Corporate executive routines during
execution, which you can alter to tailor either stage.

Reconcile calls the following routines, in the given order:

• MPDYWTDFLT (and optionally also MPDYWTMT42)

• MPDYWTCVDT

• MPDYWTRDMR (or any of your own routines you wish to call)

• MPDYWTOCOD

• MPDYWTEXCC

Preview calls the following routines, in the given order:

• MPDYMMCNTL

• Either Corporate executive routines to generate proposed members for particular
member types, or your own executive routines

• MPDYMMLOCC

You can call your own executive routines, naming them in the USING clause of the
RECONCILE or PREVIEW commands or the import from DB2 panels.

Refer to "Tailorable Corporate Executive Routines" on page 158 for details of the above
Corporate executive routines. To print any Corporate executive routine, enter:

MP PRINT EXECUTIVE corp-exec-name ;

ASG supplies the routines as EXECUTIVE-ROUTINE members in the Manager
Products Administration repository.

 ASG-Manager Products Relational Technology Support: DB2

158

One way to tailor a Corporate executive routine is to copy it to a USER-MEMBER with
the same name, then tailor the USER-MEMBER, leaving the master copy intact. The
USER-MEMBER will be called in preference to the Corporate executive routine.

Tailorable Corporate Executive Routines
MPDYWTDFLT sets up the default initialization executive routines which are called
during reconciliation, and the default form of the contains attribute for DB2-TABLE and
DB2-VIEW member definitions. You can alter form settings, using the variable
REC_FORM_DESC.

MPDYWTDFLT also optionally calls the tailorable routine MPDYWTMT42, to
establish member type checking during reconciliation. MPDYWTDFLR is called to
initialize user-specific COMMON attributes.2.5

MPDYWTCVDT converts SQL data types for columns into ITEM form descriptions and
usages. It converts each column data type, setting up a DMR_MEM_DESC variable
according to default conversion rules.

Refer to "Documenting DB2 Security Information" on page 96 for details of how to
document column data types in the repository.

Refer to the table in "Documenting Columns" on page 155 for details of default
conversion rules.

MPDYWTRDMR generates proposed member names and types from extracted object
information.

MPDYWTOCOD converts SQL keyword codes, which represent attributes specific to
the DB2 objects, into repository member attributes. For example, U, which represents a
Unique Index, is converted to UNIQUE.

MPDYWTEXCC extracts default common attributes (such as the DESCRIPTION
attribute) from the repository. It is passed 2 parameters:

• &p0: The DMR_MEM_NAME array number of the current member being
processed.

• &pl: The DMR_MEM_NAME array number of the first member in a chain of
members with the same name.

&p1 equals &p0 when the current member is processed for the first (or only) time. If the
two values differ, then the current member (at &p0) has already been processed (at p&l)
and the default common attribute variables associated with &p1 can be used for &p0; so,
no more DRETRIEVEs are needed.

7 Importing From DB2

159

MPDYMMCNTL reads the type of each proposed member (resulting from reconciling),
then passes control to the appropriate Corporate executive routine (listed below) to
generate a repository definition for that object type.

The Corporate executive routines listed in the previous tables all:

• Generate REPLACE or ADD command statements, followed by the appropriate
member definition for the proposed member

• Call the Corporate executive routine MPDYMMLOCC which sets up the default
common attributes for the proposed member.

DB2 Object Executive Routine Called Member Type Generated

alias MPDYMM12AL DB2-ALIAS

authorization-ID MPDYMMLOUS DB2-USER

column MPDYMMLOIT ITEM

database MPDYMM12DB DB2-DATABASE

index MPDYMM12IN DB2-INDEX

plan MPDYMM12PL DB2-PLAN

package MPDYMM12PK DB2-PACKAGE

storage group MPDYMM12ST DB2-STOGROUP

table MPDYMM12TB DB2-TABLE

table space MPDYMM12TS DB2-TBSPACE

view MPDYMM12VW DB2-VIEW

procedure or function MPDYMM12PX2.5 DB2-PROCEDURE

trigger MPDYMM12TG2.5 DB2-TRIGGER

distinct type MPDYMMLOIT2.5 ITEM

SQL/DS object Executive Routine Called Member Type Generated

column MPDYMMLOIT ITEM

authorization-ID MPDYMMLOUS SQL-USER

table MPDYMM32TB SQL-TABLE

view MPDYMM32VW SQL-VIEW

dbspace MPDYMM32DB SQL-DBSPACE

index MPDYMM32IN SQL-INDEX

 ASG-Manager Products Relational Technology Support: DB2

160

Global Variables Used in the Import Commands
Reconcile and preview both use global variables on the WBTA to control and store the
information extracted from the DB2 catalog. These global variables are grouped
according to how they are used. The types of variable, and the naming conventions for
each variable, are given below:

• Check constraint data variables (EXT_COL_CHK_)

• Fieldproc data variables (EXT_FPR_)

• Database data variables (EXT_DAT_)

• Storage group data variables (EXT_STO_ and EXT_VOL_)

• Plan data variables (EXT_PLA_ and EXT_DEP_)

• Package/collection data variables (EXT_PAC_)

• Table space data variables (EXT_TBS_)

• Column data variables (EXT_COL_)

• Index data variables (EXT_IND_)

• Table data variables (EXT_TAB_)

• View data variables (EXT_VIE_ and EXT_B)

• Miscellaneous data variables (EXT_)

• Generic import variables (EXT_OBJ_)

• Proposed repository member variables (DMR_MEM_)

• Variables for existing repository members (DMR_DIC_)

• Default common attribute variables (DMR_DIC_)

• References from existing repository members (DMR_REF_).

7 Importing From DB2

161

The following sections list the variables in the above groups, the catalog values assigned
to them, and how Manager Products uses them (Refer to the IBM reference manuals for
the exact meaning and use of the extracted values).

Fieldproc Variables

Database Data Variables

Storage Group Data Variables

Variable Name Source (DB2)/Use

EXT_FPR_CONSTANT Contains the parameter list given after the
FIELDPROC keyword in the statement that
created the column.

Variable Name Source (DB2)/Use

EXT_DAT_BPOOL sysdatabase.bpool.

EXT_DAT_CCSID Default encoding scheme for the database. It
may be EBCDIC or ASCII.

EXT_DAT_CREATOR_PTR Pointer to the EXT_OBJ_NAME array that
names the creator of the database.

EXT_DAT_CREATORS sysdatabase.creator

EXT_DAT_GROUP_MEMBER sysdatabase.group_member

EXT_DAT_STOGROUP sysdatabase.stgroup

EXT_DAT_STOGROUP_PTR Pointer to the EXT_OBJ_NAME array that
names the storage group used for the
database.

EXT_DAT_TYPE sysdatabase.type

Variable Name Source (DB2)/Use

EXT_STO_CREATOR sysstogroup.creator

EXT_STO_VCATNAME sysstogroup.vcatname

EXT_STO_VOL_OCC Count (distinct sysvolumes.volid).

EXT_STO_VOL_PTR Pointer to the EXT_STO_VOL_ID array.

EXT_STO_VPASSWORD sysstogroup.vpassword

 ASG-Manager Products Relational Technology Support: DB2

162

Plan Data Variables

EXT_VOL_ID sysvolumes.volid

EXT_VOL_SCREATOR sysvolumes.sgcreator

EXT_VOL_SNAME sysvolumes.sgname

Variable Name Source (DB2)/Use

EXT_DEP_PCNAME sysplan.creator

EXT_DEP_PNAME sysplan.name

EXT_PLA_ACQUIRE sysplan.acquire

EXT_PLA_CREATOR sysplan.creator

EXT_PLA_DEGREE sysplan.degree

EXT_PLA_DEP_OCC Count (distinct.sysdbrm.name).

EXT_PLA_DEP_PTR Pointer to the EXT_OBJ_NAME array for a
dependent DBRM.

EXT_PLA_DISCONNECT sysplan.disconnect

EXT_PLA_DYNAMICRULES sysplan.dynamicrules

EXT_PLA_EXPLAIN plan.explan

EXT_PLA_ISOLATION sysplan.isolation

EXT_PLA_KEEPDYNAMIC Indicates whether prepared dynamic
statements are to be purged at each commit
point.

EXT_PLA_RELEASE sysplan.release

EXT_PLA_REOPTVAR Indicates whether the access path is
determined again at execution time using
input variable values.

EXT_PLA_SQLRULES sysplan.sqlrules

EXT_PLA_VALIDATE sysplan.validate

Variable Name Source (DB2)/Use

7 Importing From DB2

163

Table Space Data Variables

Variable Name Source (DB2)/Use

EXT_TBS_BPOOL systablespace.bpool
EXT_TBS_CCSID Default encoding scheme for the table space.

It may be EBCDIC or ASCII.
EXT_TBS_CLOSE systablespace.closerule
EXT_TBS_COMPRESS stablepart.compress
EXT_TBS_CREATOR systablespace.creator
EXT_TBS_CREATOR_PTR Pointer to the EXT_OBJ_NAME array that

names the creator of the table space.
EXT_TBS_DATABASE systablespace.dbname
EXT_TBS_DATABASE_PTR Pointer to the EXT_OBJ_NAME array that

names the database of the table space.

EXT_TBS_DSETPASS systablespace.dsetpass

EXT_TBS_ERASE systablespace.eraserule

EXT_TBS_FREEPAGE systablepart.freepage
EXT_TBS_GBPCACHE systablepart.gpbcache
EXT_TBS_LARGE systablespace.type

EXT_TBS_LOCKMAX systablespace.lockmax
EXT_TBS_LOCKPART systablespace.lockpart

EXT_TBS_LOCKSIZE systablespace.lockrule
EXT_TBS_MAXROWS The maximum number of rows that DB2 will

place on a data page.

EXT_TBS_NAME systablespace.name

EXT_TBS_PARTNO systablepart.partition

EXT_TBS_PCTFREE systablepart.pctfree

EXT_TBS_PQTY systablepart.pqty

EXT_TBS_PTN_OCC systablespace.partition

EXT_TBS_PTN_PTR Pointer to a partition in the table space.

EXT_TBS_SEGSIZE null (V1.3) : systablespace.segsize (V2.1)

EXT_TBS_SQTY systablepart.sqty

 ASG-Manager Products Relational Technology Support: DB2

164

Column Data Variables

EXT_TBS_STOGROUP_PTR Pointer to EXTT_OBJ_NAME that names
the storage group used for the tablespace.

EXT_TBS_STOGRP systablepart.storname

EXT_TBS_VCAT systablepart.vcatname

Variable Name Source (DB2)/Use

EXT_COL_BIT_DATA syscolumns.foreignkey

EXT_COL_CHK_PTR Pointer to the EXT_OBJ_NAME array that
names the check constraint for the column.

EXT_COL_COMMENT syscolumns.remarks

EXT_COL_CORREL Identifier designating the correlation name of
the table or view to which the column belongs
(VIEWS ONLY).

EXT_COL_CREATOR syscolumns.tbcreator

EXT_COL_DEFAULT syscolumns.default

EXT_COL_DEFAULTVAL syscolumns.defaultvalue

EXT_COL_EXPRESSION If the column consists of an expression
referring to one or more other columns, this
variable contains the expression (VIEWS
ONLY).

EXT_COL_FLDPROC syscolumns.fldproc

EXT_COL_FLDPROC_PTR Pointer to the EXT_OBJ_NAME array,
naming the field procedure for this column.

EXT_COL_GROUPBY Contains GROUP-BY if the column is used in
a GROUP BY attribute in a VIEW; otherwise
it contains null (VIEWS ONLY).

EXT_COL_LABEL syscolumns.label

EXT_COL_LENGTH syscolumns.length

EXT_COL_NAME Contains the name of the column.

EXT_COL_NULLS syscolumns.nulls

EXT_COL_NUMBER syscolumns.colno

EXT_COL_PKEY Contains PRIMARY-KEY if the column is a
primary key.

Variable Name Source (DB2)/Use

7 Importing From DB2

165

Index Data Variables

EXT_COL_PRECISION syscolumns.(length-scale)
EXT_COL_PSEQUENCE syscolumns.keyseq

EXT_COL_SCALE syscolumns.keyseq

EXT_COL_SEQUENCE syskeys.ordering

EXT_COL_TNAME syscolumns.tbname

EXT_COL_TYPE syscolumns.coltype

Variable Name Source (DB2)/Use

EXT_IND_BUFPOOL sysindexes.bpool
EXT_IND_CLOSE sysindexes.closernle

EXT_IND_CLUSTER sysindexes.clustering

EXT_IND_COL_ICREATOR sysindexes.creator

EXT_IND_COL_INAME sysindexes.name

EXT_IND_COLUMN_OCC sysindexes.colcount

EXT_IND_COLUMN_PTR Pointer to the EXT_OBJ_NAME array that names
the columns used in the index.

EXT_IND_COLUMN_SEQ Shows the sequence in which the column entries
are indexed. It may be ASCENDING or
DESCENDING.

EXT_IND_CREATOR sysindexes.creator

EXT_IND_CREATOR_PTR Pointer to the EXT_OBJ_NAME array that names
the creator of the index.

EXT_IND_DSETPASS sysindexes.dsetpass

EXT_IND_ERASE_RULE sysindexes.eraserule

EXT_IND_INDEX_TYPE sysindexes.indextype

EXT_IND_SUBPAGE Contains the number of subpages per page.
EXT_IND_SUBPAGE_SIZE sysindexes.pgsize

EXT_IND_TABLE_PTR Pointer to the EXT_OBJ_NAME array that names
the indexed table.

EXT_IND_TCREATOR sysindexes.tbcreator

Variable Name Source (DB2)/Use

 ASG-Manager Products Relational Technology Support: DB2

166

Table Data Variables

EXT_IND_TNAME sysindexes.tbname

EXT_IND_TYPE sysindexes.uniquerule

EXT_PART_FREEPAGE sysindexpart.freepage

EXT_PART_GBPCACHE sysindexes.gbpcache

EXT_PART_PCTFREE sysindexpart.pctfree

EXT_PART_PIECESIZE Maximum size of a data set storage piece (in K)
that will be used for non-partitioned indexes.

EXT_PART_PRIQTY sysindexpart.pqty

EXT_PART_SECQTY sysindexpart.secqty

EXT_PART_STORGROUP_PTR Pointer to the EXT_OBJ_NAME array that names
the storage group used for the index.

EXT_PART_STORNAME sysindexpart.storname

EXT_PART_VCATNAME sysindexpart.vcatname

Variable Name Source (DB2)/Use

EXT_TAB_AUDIT systables.auditing

EXT_TAB_CCSID Default encoding scheme for the tables. It may
be EBCDIC or ASCII.

EXT_TAB_CHECKNO systables.checks

EXT_TAB_CLUSTER_TYPE systables.clustertype

EXT_TAB_COL_FCOL_PTR Pointer to the EXT_0BJ_NAME array for the
foreign key which corresponds to the primary
key.

EXT_TAB_COL_OCC systables.colcount

EXT_TAB_COL_PTR Pointer to the EXT_OBJ_NAME array. It points
to the start of the columns contained in the table.

EXT_TAB_COMMENT systables.remarks

EXT_TAB_CORREL Identifier that designates the table or view.

EXT_TAB_CREATOR systables.creator

EXT_TAB_CREATOR_PTR Pointer to the EXT_OBJ_NAME array that
names the creator of the table.

Variable Name Source (DB2)/Use

7 Importing From DB2

167

EXT_TAB_DATABASE Database in which table is stored.

EXT_TAB_EDPROC systables.edproc

EXT_TAB_EDPROC_PTR Pointer to the EXT_OBJ_NAME array for the
edit procedure.

EXT_TAB_FKEY_CNAME sysforeigukeys.colname

EXT_TAB_FKEY_CREATOR sysforeignkeys.creator
EXT_TAB_FKEY_CTNAME sysforeigukeys.tbname
EXT_TAB_FKEY_DELRULE sysrels.deleterule

EXT_TAB_FKEY_NAME sysforeignkeys.relname

EXT_TAB_FKEY_OCC systables.parents

EXT_TAB_FKEY_PTR Pointer to the EXT_OBJ_NAME array for the
first foreign key.

EXT_TAB_LABEL systables.label

EXT_TAB_PKEY_PCTFREE Contains the percentage of space in each index
page reserved for later insertion and updates of
the primary key.

EXT_TAB_PKEY_TAB_COL_OCC Contains the number of columns in a foreign
key.

EXT_TAB_PKEY_TAB_COL_PTR Contains a pointer to the DMR_MEM_NAME
array, which contains the first column in a
foreign key.

EXT_TAB_ROWS systables.card

EXT_TAB_SPACE systables.tsname

EXT_TAB_SPACE_PTR Pointer to the EXT_OBJ_NAME array for the
TBSPACE, or DBSPACE, which the table
occupies.

EXT_TAB_TSOWNER systables.tsname

EXT_TAB_VALPROC systables.valproc

EXT_TAB_VALPROC_PTR Pointer to the EXT_OBJ_NAME array for the
validation procedure.

Variable Name Source (DB2)/Use

 ASG-Manager Products Relational Technology Support: DB2

168

View Data Variables

Variable Name Source (DB2)/Use

EXT_BCREATOR sysviewdep.bcreator

EXT_BNAME sysviewdep.bname

EXT_BTYPE sysviewdep.btype

EXT_TAB_SELECT_TYPE Value of SELECT or SUBSELECT for table entries
only.

EXT_VIE_CHECK_OPTION Specifies whether or not the check option was specified
in the CREATE VIEW statement.

EXT_VIE_CNAME Contains the column name in the view.

EXT_VIE_COMMENT Contains information about the view, supplied by a user
via an SQL COMMENT statement.

EXT_VIE_HAVING Array which contains all the extracted HAVING
attributes.

EXT_VIE_HAVING_OCC Contains the number of array elements which are named
in the HAVING attribute of the AS subselect, in the SQL
CREATE VIEW statement.

EXT_VIE_HAVING_PTR Pointer to the EXT_VIE_HAVING array which
contains the HAVING attribute.

EXT_VIE_LABEL The label of the VIEW as given by a LABEL ON
statement.

EXT_VIE_SELECT_TYPE Shows the type of selection of VIEWs. It may contain
either ALL or DISTINCT.

EXT_VIE_TABLE_OCC Contains the number of TABLEs referred to by this
VIEW.

EXT_VIE_TABLE_PTR Pointer to the TABLE referred to by the VIEW.

EXT_VIE_WHERE Array which contains all the extracted WHERE
attributes.

EXT_VIE_WHERE_OCC Contains the number of array elements which are named
in the WHERE attribute of the AS subselect, in the SQL
CREATE VIEW statement.

EXT_VIE_WHERE_PTR Pointer to the EXT_VIE_WHERE array which contains
the WHERE attribute.

EXT_VIEW_TEXT sysviews.text

7 Importing From DB2

169

Package/Collection Variables

Check-constraint Variables

Variable Name Source (DB2)/Use

EXT_PAC_COLLECTION syspackage.collid

EXT_PAC_CON_OCC syspackage.sysentries

EXT_PAC_CONTOKEN syspackage.contoken
EXT_PAC_CREATOR syspackage.creator

EXT_PAC_CURRENTDAT syspaclcage.deferprep

EXT_PAC_DEFERPREPARE Whether PREPARE processing is deferred until OPEN
is executed.

EXT_PAC_DEGREE syspackage.degree

EXT_PAC_DYNAMICRULES syspackage.dynamicrules

EXT_PAC_EXPLAIN syspackage.explain

EXT_PAC_ISOLATION syspackage.isolation

EXT_PAC_KEEPDYNAMIC Whether prepared dynamic statements are to be purged
at each commit point.

EXT_PAC_QUALIFIER syspackage.qualifier

EXT_PAC_RELEASE syspackage.release

EXT_PAC_REOPTVAR Whether the access path is determined again at
execution time using input variable values.

EXT_PAC_SQLERROR syspackage.sqlerror

EXT_PAC_VALIDATE syspackage.version

EXT_PAC_VERSION syspackage.version

Variable Name Source (DB2)/Use

EXT_CHK_NAME syschecks.checkname

EXT_CHK_CONDITION syschecks.checkcondition

 ASG-Manager Products Relational Technology Support: DB2

170

Miscellaneous Data Variables

Generic Import Variables
These variables are generic to import from any source. They are used during
reconciliation to generate proposed member names and types.

Variable Name Source (DB2)/Use

EXT_BCREATOR sysviewdep.bcreator

EXT_BNAME sysviewdep.bname

EXT_BTYPE sysviewdep.btype

EXT_DEP_PCNAME sysplan.creator

EXT_DEP_PNAME sysplan.name

EXT_VOL_ID sysvolumes.volid

EXT_VOL_SCREATOR sysvolumes.sgcreator

EXT_VOL_SNAME sysvolumes.sgname

Variable Name Source (DB2)/Use

EXT_OBJ_CHAIN Contains information to link a parent and its children.
The variable contains the array number of the first child
if the object is a parent, of the second child if the object
is a first child, and so on. For the last child the value of
this variable will be null.

EXT_OBJ_CHAIN_END For a parent object, this variable contains a pointer to its
last child. It is used to build the EXT_OBJ_CHAIN
array without going through the whole chain.

EXT_OBJ_ID Contains the fully qualified name for a parent object,
normally EXT_OBJ_NAME prefixed by the object’s
creator and a full stop.

EXT_OBJ_NAME One of the following catalog sources, depending on the
object being extracted: systables.name,
syscolumns.name, sysdatabase.name, sysplan.name,
sysdbrm.name, sysstogroup.name, systablespace.name,
systablepart.name, sysindexes.name, syskeys.name.

EXT_OBJ_OCC Contains the total number of parent objects extracted.

EXT_OBJ_PARENT_
POINTER

For children this will be the array element number for
the EXT_OBJ_NAME array that names the parent
object. For parents this will be null.

7 Importing From DB2

171

Proposed Repository Member Variables
These are generated during reconciliation and describe the proposed member names and
types.

EXT_OBJ_TYPE One of the following literal values, depending on the
object being extracted: TABLE or VIEW, COLUMN,
DATABASE, PLAN, PROGRAM, STOGROUP,
TBSPACE, INDEX.

EXT_SOURCE Contains the name of the source database. It can have
the value DB2, SQL/DS, or EXF (for external files).

Note:
Other EXT_OBJ_xx variables are reserved for future use.2.5

Variable Name Use

DMR_MEM_CHAIN Contains a forward pointer for all proposed members with
the same name. Note that the last member in the chain will
point to the first member.

DMR_MEM_CHAIN_PREV Contains a backward pointer for all proposed members
with the same name. Note that the first member in the
chain will point to the last member.

DMR_MEM_DESC Contains a proposed ITEM member’s form description.

DMR_MEM_FUNC Defines the repository update function to be applied to the
object. It may contain REPLACE, ADD, IGNORE, or
AMEND.2.5

DMR_MEM_GEN Indicator used during preview, showing whether or not to
generate the definition for the object. It may contain either
GEN, NOGEN, or REF. GEN means generate the
definition. NOGEN means do not generate the definition
because: a) the parent of this object has
DMR_MEM_FUNC set to IGNORE, or b) the definition
will be generated via another object in this array because
another parent refers to the same member. REF means do
not generate the definition because the member is a
referenced object.

Variable Name Source (DB2)/Use

 ASG-Manager Products Relational Technology Support: DB2

172

Variables for Existing Repository Members
These are populated when a proposed member already exists on the repository.

DMR_MEM_NAME Contains the proposed member name for an object, which
is created by the default naming rule (MPDYWTRDMR)
and optionally by a user-supplied naming rule.

DMR_MEM_TYPE Contains the repository data type for the object; for
example, DB2-TABLE or ITEM.

DMR_MEM_VERSION Contains the proposed version number for a generated
ITEM. If no versions exist on the repository this will be a
null.

Variable Name Use

DMR_DIC_COND Defines the condition of the member in the repository, as
with the CONDITION column seen after a LIST command;
for example, SCE ENC, or *SCE DUM.

DMR_DIC_MATCH Shows whether a proposed member’s form description
matches a form description for a version of that member in
the repository. If there is no match, the indicator is set to
zero. If there is a match, the indicator shows the character
position in the repository form description at which the
match begins. For example, if the repository form
description contains HELD-AS CHARACTERS 8 and the
proposed form description is CHARACTERS 8 then
DMR_DIC_MATCH will be set to 9, because the match
begins with the word CHARACTERS which starts at
character position 9 in the string HELD-AS CHARACTERS
8.

DMR_DIC_TYPE Contains the member type of a repository member.

DMR_DIC_VER_OCC Contains the number of versions if the member is held on the
repository as an ITEM. It contains 1 if no versions are
specified.

DMR_DIC_VER_FORM Contains the full form description for a version of an ITEM
held on the repository.

DMR_DIC_VER_PTR Contains a pointer to the DMR_DIC_VER_FORM array if
the member is held on the repository as an ITEM.

Variable Name Use

7 Importing From DB2

173

Common Clause Variables
The number of variables set up depends on whether or not the proposed member already
exists in the repository, as most of the variables are populated from information held in
the repository member.

If the proposed member is not in the repository, only the NOTE (containing the date and
a time stamp) and ALIAS attributes are set up.

If the proposed member is already in the repository, the NOTE attribute is created,
(updated to include a message and latest time stamp), and other attributes, if they exist in
the repository member, are set up as shown below.

Note:
If you use the NO-COMMON-CLAUSES keyword during reconciliation, only the
common clause variables relating to the NOTE and ALIAS attributes (that is, the
DMR_DIC_ALI_ and DMR_DIC_NOT_ attributes) are set up.

Variable Name Use

DMR_DIC_ADM_OCC Contains the number of lines of
ADMINISTRATIVE-DATA held on the repository.

DMR_DIC_ADM_TEXT Contains the ADMINISTRATIVE-DATA text for the
member.

DMR_DIC_ADM_PTR Pointer to the DMR_DIC_ADM_TEXT array.

DMR_DIC_ALI_OCC Contains the number of ALIASES for the repository.

DMR_DIC_ALI_NAME Contains the name of the ALIAS for the member.

DMR_DIC_ALI_TYPE Contains the type of the ALIAS for the member.

DMR_DIC_ALI_PTR Pointer to the DMR_DIC_ALT_NAME array.

DMR_DIC_CAT_OCC Contains the number of lines of CATALOG data held on
the repository.

DMR_DIC_CAT_TEXT Contains the CATALOG data for the member.

DMR_DIC_CAT_PTR Pointer to the DMR_DIC_CAT_TEXT array.

DMR_DIC_COM_OCC Contains the number of lines of COMMENT data held
on the repository.

DMR_DIC_COM_TEXT Contains the COMMENT data for the member.

DMR_DIC_COM_PTR Pointer to the DMR_DIC_COM_TEXT array.

DMR_DIC_DES_OCC Contains the number of lines of DESCRIPTION data
held on the repository.

DMR_DIC_DES_TEXT Contains the DESCRIPTION data for the member.

 ASG-Manager Products Relational Technology Support: DB2

174

References from Existing Repository Members
These variables are set up if a proposed member already exists on the repository and the
repository member refers to other members.

DMR_DIC_DES_PTR Pointer to the DMR_DIC_DES_TEXT array.

DMR_DIC_NOT_OCC Contains the number of lines of NOTE text held on the
repository.

DMR_DIC_NOT_TEXT Contains the NOTE text for the member.

DMR_DIC_NOT_PTR Pointer to the DMR_DIC_NOT_TEXT array.

Variable Name Use

DMR_REF_OCC Contains the number of members referenced.

DMR_REF_PTR Pointer to DMR_REF_NAME array.

DMR_REF_MEM_NAME Contains the name of a member which is referenced.

DMR_ REF_MEM_TYPE Contains the type of the referenced member.

DMR_REF_MEM_VERSION Contains the version number of the referenced member.

DMR_REF_RELATIONSHIP Contains the relationship between the referenced
member and a parent.

Variable Name Use

175

8 8Commands

This chapter includes these sections:

Command Descriptions . 176
DB2 ALTER . 176
DB2 BIND and DB2 REBIND . 189
DB2 COMMENT and DB2 LABEL. 200
DB2 CREATE. 206
DB2 DEBUG . 213
DB2 DECLARE . 216
DB2 DROP . 221
DB2 GRANT and DB2 REVOKE . 227
DB2 LIST CYCLES . 232
DB2 LIST TABLES . 233
DB2 PLOT CLUSTER . 235
DB2 PLOT REFERENTIAL-STRUCTURES . 238
DB2 POPULATE . 243
DB2 PREVIEW . 255
DB2 PRODUCE . 267
DB2 RECALCULATE . 275
DB2 REPORT. 278
DB2 SIZE . 281
DB2 SYNONYM . 285
EXTRACT DB2 . 289
ISQL . 296
POPULATE . 299
PREVIEW IMPORT. 302
RADD . 306
RECONCILE . 307
RIGN . 319
RREN . 320
RREP. 321
RUPD . 322

Output Generation Options . 324
Sending Generated Output to a USER-MEMBER . 324
Sending Generated Output to a Sequential Dataset . 325
Sending Generated Output to a Partitioned Dataset . 326
Sending Generated Output to PRINT . 326
Examples of Output Generation Options . 326

 ASG-Manager Products Relational Technology Support: DB2

176

Name Editing Options. 327
Dropping or Replacing a Name. 328
Inserting a Character String Within a Name . 328
Examples of Name Editing Options . 329

Command Descriptions
This section describes the commands provided by Manager Products to support your DB2
environment. The commands are documented in alphabetical order of command name.

DB2 ALTER
DB2 ALTER generates one or more SQL ALTER TABLE, INDEX, TBSPACE,
STOGROUP, FUNCTION, PROCEDURE, TRIGGER, or TYPE statements from the
definition of a DB2-TABLE, DB2-INDEX, DB2-TBSPACE, DB2-STOGROUP,
DB2-PROCEDURE, DB2-TRIGGER, or ITEM member.2.5

Refer to "DB2 ALTER Syntax" on page 186 for the syntax of the DB2 ALTER
command.

You can generate SQL ALTER statements from the following repository member types:

• DB2-TABLE

• DB2-INDEX

• DB2-TBSPACE

• DB2-STOGROUP

and then apply these SQL statements in your DB2 environment to alter specified DB2
objects. By accurately documenting the DB2 objects with repository member definitions,
you can maintain these objects with SQL statements generated from the definitions.

You can combine any of the options available for each member type, in any way you
wish. This means that you can generate several SQL ALTER statements to make a
combination of alterations to an object in your DB2 environment, using one DB2 ALTER
command and one member definition.

8 Commands

177

The DB2 ALTER command does not change attributes in the relevant member. You
should add or modify these attributes before entering the command. If the attributes are
not present in the member definition, no SQL statements are generated. If they are present
but have not been modified, the SQL statement(s) generated may be rejected when
applied to your DB2 environment.

Note:
You may generate an SQL ALTER TABLE statement to drop a referential constraint,
validation routine, or primary key. If so, you should drop the attributes from which the
SQL statement will be generated after entering the DB2 ALTER command. If the
attributes have already been removed the SQL statement will not be generated.

If you use distributed databases, you can specify a table using a location as part of that
table’s name, to uniquely identify it across multiple sites.

Generated statements are displayed on the screen. You can tailor this output, file it on the
MP-AID, and/or send it to an external dataset, using output generation options. You can
also tailor output by calling executive routine (user exit routines) at set points (user exits)
during output.

The systems administrator can tailor output by altering the DB2 Profile.

Refer to "Output Generation Options" on page 324 for details of output generation
options.

Refer to "Tailoring Output" on page 109 for details of tailoring output.

Adding Columns to a Table
To generate SQL ALTER TABLE statements to add columns to a table, enter:

DB2 ALTER member ADD COLUMNS n;;

where:

member is the name of a DB2-TABLE repository member

n is a number from 1 to 299 specifying the columns to be added to the table. The columns
to be added to a table are the last n columns derived from the COLUMNS attribute of the
DB2-TABLE member from which the SQL ALTER TABLE statement is being
generated. n must be less than the total number of columns derived from the COLUMNS
attribute.

A separate SQL ALTER TABLE statement is generated for each column to be added to a
table.

 ASG-Manager Products Relational Technology Support: DB2

178

An SQL statement to add a column to a table will be rejected when applied to your DB2
environment if the column already exists in the table.

You should therefore ensure that the ITEMs and GROUPs, which define the new
columns to be added to a table, are specified in the COLUMNS attribute after the
members which define the existing columns in a table. Existing columns should not be
included in the n columns to be added to a table.

The DB2 data type of columns generated in SQL ALTER TABLE statements is derived
from the definition of the ITEMs and GROUPs specified in the COLUMNS attribute.

DB2 requires that new columns added to a table must allow a null or default value. The
DB2 ALTER command therefore displays a warning message if any of the columns are
defined in the DB2-TABLE member definition as being NOT-NULL. An SQL ALTER
TABLE statement to add columns to a table cannot be generated from a DB2-TABLE
member that contains an EDITPROC clause.

Refer to Chapter 4, "Repository Definition," on page 91 for details of generating column
data types.

Adding or Dropping Referential Constraints on a Table
To generate an SQL ALTER TABLE statement to add a referential constraint to a table,
enter:

DB2 ALTER member ADD CONSTRAINT NAMED constraint-name;

or

DB2 ALTER member ADD CONSTRAINT NUMBER n;

where:

member is the name of a DB2-TABLE repository member

constraint-name is a name specified in the NAMED attribute of the DB2-TABLE
member which identifies the referential constraint to be added or dropped

n is a number identifying which referential constraint is to be added or dropped by its
sequence among other referential constraints in the DB2-TABLE member definition.

To generate an SQL ALTER TABLE statement to drop a referential constraint from a
table, enter:

DB2 ALTER member DROP CONSTRAINT NAMED constraint-name;

or

DB2 ALTER member DROP CONSTRAINT NUMBER n;

8 Commands

179

Referential constraints are defined in the CONSTRAINT attributes of DB2-TABLE
members. The SQL ALTER TABLE statement will be generated from a particular
CONSTRAINT attribute. A DB2-TABLE member can have any number of
CONSTRAINT attributes.

For example, to generate an SQL ALTER TABLE statement to add a referential
constraint on a table from the third CONSTRAINT attribute in the member
TB-DJB-CUST, enter:

DB2 ALTER TB-DJB-CUST ADD CONSTRAINT NUMBER 3;

The SQL statement will be rejected when submitted to DB2 if you attempt to add a
referential constraint that already exists in the table. The existing referential constraint
will not be modified. If you wish to replace it you should use the DB2 ALTER command
to first drop the existing referential constraint and then to add the new one.

Adding or Dropping a Primary Key on a Table
To generate an SQL ALTER TABLE statement to add a primary key, enter:

DB2 ALTER member ADD PRIMARY-KEY;

where member is the name of a DB2-TABLE repository member.

To generate an SQL ALTER TABLE statement to drop a primary key, enter:

DB2 ALTER member DROP PRIMARY-KEY;

Primary key columns are defined with the PRIMARY-KEY attribute in the DB2-TABLE
member. All columns in the DB2-TABLE that have an associated PRIMARY-KEY
keyword are generated as part of the primary key.

Columns allowing a null value cannot be part of the primary key. The DB2 ALTER
command therefore displays a warning message if any of the columns defined in the
DB2-TABLE member as being part of the primary key do not have an associated
NOT-NULL or NOT-NULL-WITH-DEFAULT keyword.

The SQL statement will be rejected when submitted to DB2 if you attempt to add a
primary key to a table that already has one. The existing primary key will not be
modified. If you wish to replace it you should first use the DB2 ALTER command to
drop the existing primary key and then to add the new one.

 ASG-Manager Products Relational Technology Support: DB2

180

Adding, Modifying, or Dropping a Validation Routine on a Table
To generate an SQL ALTER TABLE statement to add or modify a validation routine,
enter:

DB2 ALTER member ADD VALIDPROC ;

where member is the name of a DB2-TABLE repository member.

To generate an SQL ALTER TABLE statement to drop a validation routine, enter:

DB2 ALTER member DROP VALIDPROC ;

The validation routine is defined in and generated from the VALIDPROC attribute of the
DB2-TABLE member.

An SQL statement to add a validation routine will, when submitted to DB2, modify any
existing validation routine on that table.

Adding, Modifying, or Dropping a Check-Constraint
To generate an SQL ALTER statement to add or modify a check-constraint, enter:

DB2 ALTER member ADD CHECK check-constraint-name

where:

member is the name of a DB2-TABLE repository member

check-constraint-name is an SQL long identifier.

To generate an SQL ALTER statement to remove a check-constraint, enter:

DB2 ALTER member DROP CHECK check-constraint-name

Adding or Dropping a Dropping Restriction
To generate an SQL ALTER statement to apply a restriction to the table, preventing it
from being dropped in DB2, enter:

DB2 ALTER member RESTRICT-ON-DROP

where member is the name of a DB2-TABLE repository member.

To generate an SQL ALTER statement to remove the dropping restriction from the table,
enter:

DB2 ALTER member RESTRICT-ON-DROP

8 Commands

181

If the DB2-TABLE definition includes WITH-RESTRICT-ON-DROP then the
DB2-ALTER table RESTRICT-ON-DROP will generate an ADD
RESTRICT-ON-DROP. If it is missing a DROP will be generated.

Adding or Modifying the Auditing Option on a Table
To generate an SQL ALTER statement to add or modify auditing options, enter:

DB2 ALTER table AUDIT ;

where table is a DB2-TABLE repository member.

Auditing options are defined in and generated from the AUDIT attribute of the DB2-
TABLE member. If this attribute is not present, an option of AUDIT NONE is generated.

An SQL ALTER statement to add an auditing option will, when submitted to DB2,
modify any existing auditing option on that table.

Note:
If you use the AUDIT keyword with the ADD/DROP options, you must ensure that it
immediately precedes or follows these options.

Expanding Nested Data Structures
If you have used EXPAND or NO-EXPAND on the corresponding DB2 CREATE
command for this member, you should use the same keywords for this command, by
entering either:

DB2 ALTER table EXPAND alterations ;

or:

DB2 ALTER table NO-EXPAND alterations s;

where:

table is the name of a DB2-TABLE member

alterations specify the SQL ALTER TABLE statements to be generated.

EXPAND attributes in the DB2-TABLE member are used as the default.

Refer to the DB2-TABLE member type in Chapter 9, "Repository Member Types," on
page 331 for further details about the EXPAND attribute.

 ASG-Manager Products Relational Technology Support: DB2

182

Specifying an Owner of a Table
To generate an SQL ALTER TABLE statement for a table, with a specified owner
(overriding any owner named in the relevant member), enter:

DB2 ALTER table SQLID owner alterations ;

where:

table is the name of a DB2-TABLE member

owner is the authorization ID of a specific user. This must be no more than 8 characters
long and delimited

alterations specify the alterations to be generated.

Specifying a Location of a Table
To generate an SQL ALTER TABLE statement for a table, with a specified location
(overriding any location defined for the relevant member), enter:

DB2 ALTER table LOCATION loc-id alterations ;

where:

table is the name of a DB2-TABLE repository member

loc-id is a delimited string of up to 16 characters, giving a DB2 location

alterations specify the alterations to be generated

Refer to "Interrogating Your DB2 Dictionary Schema" on page 102 for details of deriving
external names.

Refer to "DB2-USER" on page 437 for details of the DB2-USER member type.

Altering a Storage Group
To generate an SQL ALTER STOGROUP statement to alter the password of a storage
group, enter:

DB2 ALTER stogroup PASSWORD ;

where stogroup is the name of a DB2-STOGROUP member.

8 Commands

183

To generate an SQL ALTER STOGROUP statement to add a number of volumes to the
start or end of a storage group, enter either:

DB2 ALTER stogroup ADD n ;

or:

DB2 ALTER stogroup ADD LAST n ;

where n is the number of volumes to be added.

For example, to generate an SQL ALTER STOGROUP statement to add the last 3
volumes listed in the DB2-STOGROUP member SG-O3 to the relevant storage group in
your DB2 environment, enter:

DB2 ALTER SG-03 ADD LAST 3 ;

Similarly, to generate an SQL statement to remove a list of volumes, enter:

DB2 ALTER stogroup REMOVE FIRST n ;

or:

DB2 ALTER stogroup REMOVE LAST n ;

where n is the number of volumes to be removed, starting either from the front or the
back of the volume list in the DB2-STOGROUP definition.

Alternatively, to generate SQL ALTER STOGROUP statements to remove a selection of
volumes from a DB2 storage group, enter either:

DB2 ALTER stogroup REMOVE NAMES volume-names ;

or:

DB2 ALTER stogroup REMOVE NUMBERS volume-numbers ;

where:

volume-names are volumes named in the DB2-STOGROUP member, separated by
commas, and delimited

volume-numbers are positions in the volume list in the DB2-STOGROUP member,
separated by commas

 ASG-Manager Products Relational Technology Support: DB2

184

Altering an Index or a Tablespace
To generate an SQL ALTER INDEX or ALTER TBSPACE statement, enter:

DB2 ALTER member alteration-attributes ;

where:

member is the name of a DB2-INDEX or DB2-TBSPACE repository member

alteration-attributes specify attributes in the member. These are keywords,
and can be a combination of any of the following, in any order:

• BUFFERPOOL

• CLOSE

• DSETPASS

• ERASE

• FREEPAGE

• LOCKSIZE (for DB2-TBSPACE members only)

• LOCKMAX (for DB2-TBSPACE members only)

• COMPRESS (for DB2-TBSPACE members only)

• PART partition-number

• PCTFREE

• PRIQTY

• GBPCACHE

• CONVERT-TYPE (for DB2-INDEX only)

• SECQTY

• USBLOCK.

where partition-number is an integer specifying a particular partition.

For example, to generate SQL ALTER INDEX statements to alter bufferpool usage on
partition number 5 of an index documented by the member IX-DJB-CUST, enter:

DB2 ALTER IX-DJB-CUST BUFFERPOOL PART 5 ;

Note:
The USBLOCK keyword corresponds to the member’s using-block clause.

8 Commands

185

Taking User Exits
To take a user exit, enter:

DB2 ALTER member alterations USING exit ;

where:

member is the name of a DB2-TABLE, DB2-INDEX, DB2-STOGROUP, or
DB2-TBSPACE member

alterations are specifications of the alterations to be generated

exit is the name of an executive routine.

Note:
The systems administrator can alter your DB2 Profile so that a default user exit is always
taken when you use the DB2 ALTER command. The USING keyword overrides any
default user exits set this way.

Refer to "Tailoring Output" on page 109 for further details of user exits.

Output Generation Options
Use the ONTO keyword to direct your generated output to:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset.

Refer "Output Generation Options" on page 324 for further details of output generation
options.

Name Editing Options
You can use the REPLACING/REPLACE, INSERTING, and DROPPING keywords to
edit generated data names, before they are output.

Refer to "Output Generation Options" on page 324 for further details of name editing
options.

 ASG-Manager Products Relational Technology Support: DB2

186

DB2 ALTER Syntax

where:

table, index, tbspace, stogroup, and database are names of
DB2-TABLE, DB2-INDEX, DB2-TBSPACE, DB2-STOGROUP, and
DB2-DATABASE members respectively

user-exit is the name of a user-created executive routine.

table-options are:

Note:
The AUDIT keyword can only be specified once, and must immediately precede or
follow all ADD/DROP selections.

where:

owner is a delimited string of up to 8 characters, giving the authorization ID of a
particular user

loc-id is a delimited string of up to 16 characters, giving the name of a DB2 location.

DB2 ALTER table table-options

<<<<<<<<<

CONVERT-TYPE
index options-1

<<<<<<<<<<<<<<<<<<<<
tbspace options-1

LOCKSIZE
LOCKMAX
COMPRESS

stogroup stogroup-options
database database-options

�� �

USING user-exit name-editing options
� �

;
ONTO destination .

PRINT
NOPRINT

� �

�

EXPAND
NO-EXPAND

SQLID owner
� �

selection1

<<<<<<<<<<<<<<<<<<<<<<<

DROP selection2
AUDIT
DATA-CAPTURE
RESTRICT-ON-DROP

LOCATION loc-id
ADD COLUMNS n ���

8 Commands

187

selection1 is:

where:

n is an integer

constraint-name is a name specified in the NAMED attribute of a DB2-TABLE
member

check-constraint-name is an SQL long identifier having up to 18 characters.

selection2 is:

where:

constraint-name is an SQL long identifier having up to 18 characters

check-constraint-name is an SQL long identifier having up to 18 characters.

options-1 are:

where integer is a partition number.

CONSTRAINT NUMBER n
PRIMARY-KEY

NAMED constraint-name
VALIDPROC

CHECK check-constraint-name

� �

CONSTRAINT NUMBER n
PRIMARY-KEY

NAMED constraint-name
VALIDPROC

CHECK check-constraint-name

� �

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
BUFFERPOOL
CLOSE
DSETPASS
PART integer
FREEPAGE
PCTFREE
USBLOCK
PRIQTY
SECQTY
ERASE
GBPCACHE

� �

 ASG-Manager Products Relational Technology Support: DB2

188

stogroup-options are:

where:

vol-number is an integer giving a number of volumes

volume is a delimited string giving a volume name

position is the position of a volume in the list of volumes in the DB2-STOGROUP
member definition.

database-options are:

name-editing-options are:

where selection is:

where:

m and p are integers in the range 1 to 96

string is a delimited string of not more than 32 printable characters

nn is an unsigned integer in the range 1 to 96.

NAMES volume

NUMBERS position
FIRST vol-number
LAST vol-number

PASSWORD
REMOVE

<< ,<<<

<<,<
� �

ADD vol-number
LAST

� �

<<<<<<<<<<<<<<<<<<<<<<
BUFFERPOOL
ROSHARE
STOGROUP

� �

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

� �

WHEN condition
��

ALL

string

(p)
m

� �

8 Commands

189

condition is:

where selection and string are as defined above.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset.

sequential-options are:

where:

rsize is the record length

blksize is the block size.

DB2 BIND and DB2 REBIND
DB2 BIND and DB2 REBIND generates BIND or REBIND subcommands for your DB2
environment.

Refer to "DB2 BIND PACKAGE Syntax" on page 193 for the syntax of the DB2 BIND
and REBIND commands.

You can generate a BIND or REBIND subcommand for the preparation of application
plans and packages in your DB2 environment. Plans are documented in DB2-PLAN
members and packages in DB2-PACKAGE members.

selection
ANY EQ string

=
NE

��

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

��

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
��

BLOCKSIZE
blksizeBLOCK-SIZE

��

 ASG-Manager Products Relational Technology Support: DB2

190

To generate a BIND or REBIND subcommand, enter:

DB2 BIND plan ;

or

DB2 BIND package ;

or

DB2 REBIND plan ;

or

DB2 REBIND package ;

where:

plan is the name of a DB2-PLAN member

package is the name of a DB2-PACKAGE member.

Most of the generated output is derived from information held in the DB2-PLAN or
DB2-PACKAGE member. Use the DB2 BIND or REBIND commands to specify
additional parameters.

The generated output is displayed on the screen. You can tailor this output, file it on the
MP-AID, and/or send it to an external dataset, using output generation options. You can
also tailor output by calling executive routines (user exit routines) at set points (user
exits) during output. This process is known as taking user exits.

The systems administrator can tailor output by altering the DB2 profile.

Refer to the DB2-PLAN and DB2-PACKAGE member types in Chapter 9, "Repository
Member Types," on page 331 for further details of application plans.

Refer to "Tailoring Output" on page 109 for details of the DB2 profile, and user exits.

Specifying Whether to Keep Dynamic Rules
You can specify whether or not dynamic rules will be kept after the commit point using
the KEEPDYNAMIC keyword. To specify that dynamic rules will be kept, enter this
command:

KEEPDYNAMIC YES

If you do not wish to keep the dynamic rules after commit points, enter this command:

KEEPDYNAMIC NO

8 Commands

191

Specifying Whether to Determine an Access Path
You can specify whether to determine an access path at run time. To specify that access
paths will be determined using default values for input variables, enter this command:

VARS NOREOPT

To specify that access paths will be determined using the values of input host variables,
enter this command:

VARS REOPT

Controlling Package Creation
When using DB2 BIND you can indicate whether or not package creation should
continue in the event of an SQL error. To abandon package creation, enter:

SQLERROR NOPACKAGE

To allow package creation to continue in error conditions, enter:

SQLERROR CONTINUE

When using DB2 REBIND for PLAN members, you may indicate that no package is to
be created for this plan by entering:

NOPKLIST

If a package list exists, it is deleted.

Generating Additional Parameters for the BIND or REBIND Command
Use the LIBRARY and ACTION keywords in the DB2 BIND command, or the FLAG
keyword in the DB2 BIND or REBIND command, to generate LIBRARY, ACTION, and
FLAG parameters for the appropriate subcommand in your DB2 environment.

These keywords have the same meaning as the appropriate parameters in DB2.

Qualifying Unqualified Members
If your plan contains unqualified aliases, indexes, table names, or views, you may provide
an implicit qualifier for them by entering:

QUALIFIER string

where string is a string of 1 to 8 characters, delimited by quotes.

 ASG-Manager Products Relational Technology Support: DB2

192

Specifying an Owner
To generate a BIND or REBIND command for a DB2-PLAN (or PACKAGE) with a
specific owner, overriding any owner already defined for the DB2-PLAN, enter either:

DB2 BIND plan SQLID owner ;

or

DB2 REBIND plan SQLID owner ;

where owner is a delimited string of up to 8 characters, giving the ID of a specific user.

Taking User Exits
To take a user exit, enter either:

DB2 BIND plan USING exit ;

or

DB2 REBIND plan USING exit ;

where exit is the name of an executive routine.

Note:
The systems administrator can alter your DB2 Profile so that a default user exit is always
taken with the DB2 BIND or DB2 REBIND commands. The USING keyword will
override any default user exits set this way.

Refer to "Tailoring Output" on page 109 for further details of user exits.

Name Editing Options
Use the REPLACE/REPLACING, INSERTING, and DROPPING keywords to edit
generated data names before they are output.

Refer to "Name Editing Options" on page 327 for further details of name editing options.

Output Generation Options
Use the ONTO keyword to direct your generated output to a specific destination. This
destination can be:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset

Refer to "Output Generation Options" on page 324 for more output generation options.

8 Commands

193

DB2 BIND PACKAGE Syntax

where:

package is the name of a DB2-PACKAGE repository member

string is a string of 1 to 8 characters, delimited

NOLOC specifies that a location name will not be generated as part of the BIND
PACKAGE package name. This allows the same package and collection members to be
used in the generation of DB2 BIND PLAN where a location may be required.

lib-name is the name, delimited, of a partitioned dataset that contains the DBRM that
is being bound into the package

version-id is a string 1 to 64 characters, delimited

user-exit is a delimited string of up to 16 characters, giving the name of an executive
routine.

name-editing-options are:

DB2 BIND package
SQLERROR NOPACKAGE

CONTINUE

�� �

QUALIFIER string SQLID string
� �

FLAG LIBRARY lib-nameI
W
E

C

NOLOC
� �

ACTION
REPLVER version-id

REPLACE

ADD

� �

USING user-exit name-editing-options
��

 .
;

ONTO destination

PRINT

NOPRINT

��

�

<<<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<<<<<<
REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

� �

WHEN condition
��

 ASG-Manager Products Relational Technology Support: DB2

194

where selection is:

where:

m and p are integers in the range 1 to 96

string is a delimited string of not more than 32 printable characters

nn is an unsigned integer in the range 1 to 96.

condition is:

where selection and string are as defined above.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset.

sequential-options are:

where:

rsize is the record length

blksize is the block size

ALL

string

(p)
m

� �

selection
ANY EQ string

=
NE

��

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

��

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
� �

BLOCKSIZE
blksizeBLOCK-SIZE

� �

8 Commands

195

DB2 BIND PLAN Syntax

where:

plan is the name of a DB2-PLAN repository member

string is a string of 1 to 8 characters, delimited

lib-name is the delimited name of one or more partitioned datasets (libraries) that
contain as members the DBRMs specified

user-exit is a delimited string of up to 16 characters, giving the name of an executive
routine.

name-editing-options are:

where selection is:

DB2 BIND plan�� �

KEEPDYNAMIC NO
YES

VARS REOPT
NOREOPT

QUALIFIER string SQLID string
� �

FLAG LIBRARY lib-nameI
W
E
C

����������
� �

ACTION
RETAIN

REPLACE

ADD

� �

USING user-exit name-editing-options
� �

 .
;

ONTO destination

PRINT

NOPRINT

��

�

��

REPLACE

DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

REPLACING
� �

WHEN condition
� �

ALL

string

(p)
m

� �

 ASG-Manager Products Relational Technology Support: DB2

196

where:

m and p are integers in the range 1 to 96

string is a delimited string of not more than 32 printable characters

nn is an unsigned integer in the range 1 to 96.

condition is:

where selection and string are as defined above.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset.

sequential-options are:

where:

rsize is the record length

blksize is the block size.

selection
ANY EQ string

=
NE

� �

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

� �

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
� �

BLOCKSIZE
blksizeBLOCK-SIZE

� �

8 Commands

197

DB2 REBIND PACKAGE Syntax

where:

package is the name of a DB2-PACKAGE repository member

string is a string of 1 to 8 characters, delimited

NOLOC specifies that a location name will not be generated as part of the BIND
PACKAGE package name. This allows the same package and collection members to be
used in the generation of DB2 BIND PLAN where a location may be required.

user-exit is a delimited string of up to 16 characters, giving the name of an
executive routine.

name-editing-options are:

where selection is:

where:

m and p are integers in the range 1 to 96

DB2 REBIND package� �

QUALIFIER string SQLID string
��

FLAG
NOLOCI

W
E
C

� �

USING user-exit name-editing-options
� �

 .
;

ONTO destination

PRINT

NOPRINT

�

�

�

��

REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

� �

WHEN condition
� �

ALL

string

(p)
m

� �

 ASG-Manager Products Relational Technology Support: DB2

198

string is a delimited string of not more than 32 printable characters

nn is an unsigned integer in the range 1 to 96.

condition is:

where selection and string are as defined above.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset.

sequential-options are:

where:

rsize is the record length

blksize is the block size.

selection
ANY EQ string

=
NE

� �

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

� �

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
��

BLOCKSIZE
blksizeBLOCK-SIZE

��

8 Commands

199

DB2 REBIND PLAN Syntax

where:

plan is the name of a DB2-PLAN repository member

string is a string of 1 to 8 characters, delimited

user-exit is a delimited string of up to 16 characters, giving the name of an executive
routine.

name-editing-options are:

where selection is:

where:

m and p are integers in the range 1 to 96

DB2 REBIND plan�� �

KEEPDYNAMIC NO
YES

VARS REOPT
NOREOPT

NOPKLIST
� �

QUALIFIER string SQLID string
� �

FLAG I
W
E
C

��

USING user-exit name-editing-options
� �

 .
;

ONTO destination

PRINT

NOPRINT

� �

�

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

��

WHEN condition
��

ALL

string

(p)
m

��

 ASG-Manager Products Relational Technology Support: DB2

200

string is a delimited string of not more than 32 printable characters

nn is an unsigned integer in the range 1 to 96.

condition is:

where selection and string are as defined above.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset

sequential-options are:

where:

rsize is the record length

blksize is the block size.

DB2 COMMENT and DB2 LABEL
DB2 COMMENT and DB2 LABEL generate SQL COMMENT ON or LABEL ON
statements from the definition of a DB2-TABLE, DB2-VIEW, or DB2-ALIAS member.

Refer to "DB2 COMMENT and DB2 LABEL Syntax" on page 204 for the syntax of the
DB2 COMMENT command.

selection
ANY EQ string

=
NE

� �

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

��

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
� �

BLOCKSIZE
blksizeBLOCK-SIZE

� �

8 Commands

201

You can generate SQL COMMENT ON or LABEL ON statements, by entering either:

DB2 COMMENT member ;

or:

DB2 LABEL member ;

where member is a DB2-TABLE, DB2-VIEW, or DB2-ALIAS repository member.

The generated output displays on the screen. You can tailor this output, file it on the
MP-AID, or send it to an external dataset, using output generation options. You can also
tailor output by calling executive routines (user exit routines) at set points (user exits)
during output. This process is known as taking user exits.

You can choose to generate only the last n comments or labels in a table or view, if you
want to generate additional comments or labels after a table or view has been altered and
columns added.

You can generate SQL COMMENT ON and LABEL ON statements for a table, view, or
alias, and for columns within a table or view. An SQL COMMENT ON statement is
generated from every DB2-COMMENT attribute and an SQL LABEL ON statement
from every DB2-LABEL attribute in the definition of the specified DB2-TABLE,
DB2-VIEW, or DB2-ALIAS member. If the member does not have a DB2-COMMENT
or DB2-LABEL attribute then no statements are generated.

Refer to Chapter 9, "Repository Member Types," on page 331 for examples of SQL
COMMENT ON and LABEL ON statements generated by the DB2 CREATE command.

Refer to "Tailoring Output" on page 109 for details of tailoring output.

Expanding Nested Data Structures
If you have used EXPAND or NO-EXPAND on the corresponding DB2 CREATE
command for this member, you should use the same keywords for this command, by
entering either:

DB2 COMMENT member EXPAND ;

or:

DB2 LABEL member EXPAND ;

or, for NO-EXPAND, either:

DB2 COMMENT member NO-EXPAND ;

 ASG-Manager Products Relational Technology Support: DB2

202

or:

DB2 LABEL member NO-EXPAND ;

EXPAND attributes in the DB2-TABLE member are used as the default.

Refer to "DB2 CREATE" on page 206 for use of the EXPAND/NO-EXPAND keywords.

Refer to Chapter 9, "Repository Member Types," on page 331 for further details about the
EXPAND clause.

Specifying an Owner of a Table or View
To generate SQL COMMENT ON or LABEL ON statements for a table or view with a
specified owner (overriding any owner named in the relevant member), enter either:

DB2 COMMENT member SQLID owner ;

or:

DB2 LABEL member SQLID owner ;

where owner is a delimited string of up to 8 characters, giving the authorization ID of a
specific user.

Specifying a Location of a Table or View
To generate SQL COMMENT ON or LABEL ON statements on a table or view,
overriding any location given for the relevant member, enter either:

DB2 COMMENT member LOCATION loc-id ;

or:

DB2 LABEL member LOCATION loc-id ;

where loc-id is a delimited string of up to 16 characters, giving the name of a DB2
location.

Refer to "Interrogating Your DB2 Dictionary Schema" on page 102 for details of deriving
external names.

Refer to Chapter 9, "Repository Member Types," on page 331 for details of the
DB2-USER member type.

8 Commands

203

Generating Comments and Labels for the Last Columns in a Table or View
To generate SQL COMMENT ON or LABEL ON statements for only the last n columns
of a table or view, enter either:

DB2 COMMENT member LAST n ;

or

DB2 LABEL member LAST n ;

where n is an integer, specifying the number of comments to be generated.

Taking User Exits
To take a user exit, enter either:

DB2 COMMENT member USING exit-routine ;

or

DB2 LABEL member USING exit-routine ;

where exit-routine is the name of an executive routine.

Note:
The systems administrator can alter your DB2 Profile so that a default user exit is always
taken when you use the DB2 COMMENT or DB2 LABEL commands. The USING
keyword overrides any default user exits set this way.

Refer to "Tailoring Output" on page 109 for further details of user exits.

Name Editing Options
You can use the REPLACING/REPLACE, INSERTING, and DROPPING keywords to
edit data names before they are output.

Refer to "Name Editing Options" on page 327 for further details of name editing options.

Output Generation Options
You can use the ONTO keyword to direct your generated output to a specific destination.
This destination can be:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset.

Refer to "Output Generation Options" on page 324 for more output generation options.

 ASG-Manager Products Relational Technology Support: DB2

204

DB2 COMMENT and DB2 LABEL Syntax

where:

table is the name of a DB2-TABLE member

view is the name of a DB2-VIEW member

alias is the name of a DB2-ALIAS member.

options are:

where:

owner is a delimited string of up to 8 characters, giving the authorization ID of a specific
user.

loc-id is a delimited string of up to 16 characters, giving the name of a DB2 location

n is an integer

name-editing-options are:

DB2 optionsCOMMENT
LABEL

table
view
alias

�� �

USING user-exit
��

 .
;

ONTO destination

PRINT

NOPRINT

� � �

EXPAND SQLID owner
NO-EXPAND

� �

LOCATION loc-id LAST n
� �

name-editing-options
� �

<<<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<<<<<<
REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

� �

WHEN condition
� �

8 Commands

205

where selection is:

where:

m and p are integers in the range 1 to 96

string is a delimited string of not more than 32 printable characters

nn is an unsigned integer in the range 1 to 96.

condition is:

where selection and string are as defined above.

user-exit is the name of an executive routine.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset.

sequential-options are:

where:

rsize is the record length

blksize is the block size.

ALL

string

(p)
m

� �

selection
ANY EQ string

=
NE

� �

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

� �

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
� �

BLOCKSIZE
blksizeBLOCK-SIZE

� �

 ASG-Manager Products Relational Technology Support: DB2

206

DB2 CREATE
DB2 CREATE generates an SQL CREATE statement for a DB2 object from its
definition in a repository member.

Refer to "DB2 CREATE Syntax 2.5" on page 210 for the syntax of the DB2 CREATE
command.

Use the DB2 CREATE command to generate an SQL CREATE statement for a DB2
object defined by the relevant member type in your repository, by entering:

DB2 CREATE member ;

where member is the name of a repository member, of one of these types:

To generate SQL CREATE SYNONYM statements, use the DB2 SYNONYM
command.

The DB2 data types of columns in tables or views is given in the ITEM and GROUP
members named in the COLUMNS attribute of the relevant DB2-TABLE or DB2-VIEW
member.

If you use distributed databases, you can specify a location as part of an object’s name, to
uniquely identify it across multiple sites.

Using similar DB2 CREATE commands, you can easily generate similar SQL CREATE
statements for objects with different owners. For example, you might want to create
copies of a table, for different owners in a project team.

Generated output is displayed on the screen. You can tailor this output, file it on the
MP-AID, and/or send it to an external dataset, using output generation options. You can
also tailor output by calling executive routines (user exit routines) at set points (user
exits) while generating output.

The systems administrator can also tailor output using the DB2 profile.

• DB2-ALIAS • DB2-TABLE

• DB2-DATABASE • DB2-TBSPACE

• DB2-INDEX • DB2-VIEW

• DB2-PROCEDURE2.5 • ITEM2.5

• DB2-STOGROUP • PROGRAM2.5

• DB2-TRIGGER2.5 • DB2-DMS 2510

8 Commands

207

Refer to "Tailoring Output" on page 109 for details of tailoring using the DB2 profile,
and user exits.

Refer to "Output Generation Options" on page 324 for details of output generation
options.

Refer to the DB2-TABLE member type in Chapter 9, "Repository Member Types," on
page 331 for an example of a generated SQL CREATE TABLE statement.

Generating SQL COMMENT ON and LABEL ON Statements
Use the WITH-COMMENTS or WITH-LABELS keywords to generate SQL
COMMENT ON or LABEL ON and CREATE statements with the DB2 CREATE
command. The comments or labels are taken from the DB2-COMMENT or DB2-LABEL
attributes of the specified repository member.

To generate SQL COMMENT ON statements, enter:

DB2 CREATE member WITH-COMMENTS ;

where member is the name of a DB2-TABLE, DB2-VIEW, or DB2-ALIAS repository
member.

To generate SQL LABEL ON statements, enter:

DB2 CREATE member WITH-LABELS ;

Alternatively, the systems administrator can change the DB2 profile to automatically
generate SQL COMMENT ON or SQL LABEL ON statements when you generate SQL
CREATE statements.

Note:
The WITH-COMMENTS/WITH-LABELS keywords override any default DB2 profile
settings.

To generate SQL COMMENT ON and LABEL ON statements only, use the DB2
COMMENT and DB2 LABEL commands respectively.

Refer to "Tailoring Output" on page 109 for details of the DB2 profile.

Refer to the DB2-TABLE member type in Chapter 9, "Repository Member Types," on
page 331 for an example of SQL CREATE, COMMENT ON, and LABEL ON
statements generated by the DB2 CREATE command.

 ASG-Manager Products Relational Technology Support: DB2

208

Taking User Exits
To take a user exit, enter:

DB2 CREATE member USING exit-routine ;

where:

member is the name of a DB2-ALIAS, DB2-DATABASE, DB2-INDEX,
DB2-STOGROUP, DB2-TABLE, DB2-TBSPACE, or DB2-VIEW member

exit-routine is the name of an executive routine

Note:
The systems administrator can alter the DB2 profile so that a default user exit is always
taken when you use the DB2 CREATE command. The USING keyword overrides any
default user exits set this way.

Refer to "Output Generation Options" on page 324 for further details of user exits.

Specifying an Owner
To generate an SQL CREATE statement, specifying an owner (overriding any name
given in the relevant repository member), enter:

DB2 CREATE member SQLID owner ;

where:

member is the name of a DB2-TABLE, DB2-VIEW, or DB2-INDEX member

owner is a delimited string of up to 8 characters, giving the ID of a specific user.

Specifying a Location
To generate an SQL CREATE statement, naming a location (overriding any location
given for the relevant repository member), enter:

DB2 CREATE member LOCATION location ;

where:

member is the name of a DB2-TABLE or DB2-VIEW member

location is a delimited string of up to 16 characters, giving a DB2 location.

Refer to "Interrogating Your DB2 Dictionary Schema" on page 102 for details of deriving
external names.

8 Commands

209

Expanding Nested Data Structures
Use the EXPAND keyword to expand the contents of GROUP members (documenting
columns) contained in a repository member (documenting a DB2 table, view, or index).
These GROUPs can contain other GROUPS, which are expanded in turn.

To expand the contents of a GROUP, enter:

DB2 CREATE member EXPAND ;

where member is the name of a DB2-TABLE, DB2-VIEW, or DB2-INDEX member.

The NO-EXPAND keyword has the opposite effect, forcing all expansion off, overriding
any EXPAND attribute in the member definition.

To force expansion off, enter:

DB2 CREATE member NO-EXPAND ;

Note:
If the EXPAND/NO-EXPAND keyword is not used, expansion only occurs when any
EXPAND attributes in the member are specified.

Refer to Chapter 9, "Repository Member Types," on page 331 for details of the EXPAND
attribute.

Suppressing Referential Integrity
Use the SUPPRESS-RI keyword to suppress the generation of any referential integrity
attributes (constraints, foreign keys) held in a DB2-TABLE member. The table, when
created in your DB2 environment using the generated SQL CREATE TABLE statement,
will have no referential integrity.

For example, you might use this keyword when you first create a table, to test its basic
structure.

To suppress the generation of referential integrity, enter:

DB2 CREATE table SUPPRESS-RI ;

where table is the name of a DB2-TABLE member.

You can define a table with a self-referencing constraint. The constraint is not contained
in the SQL CREATE TABLE statement generated, but is automatically generated in a
subsequent (additional) ALTER TABLE statement, as required by DB2.

 ASG-Manager Products Relational Technology Support: DB2

210

Name Editing Options
You can use the REPLACING/REPLACE, INSERTING, and DROPPING keywords to
edit generated data names before they are output.

Refer to "Name Editing Options" on page 327 for further details of name editing options.

Output Generation Options
Use the ONTO keyword to direct your generated output to:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset.

Refer to "Output Generation Options" on page 324 for further details of output generation
options.

DB2 CREATE Syntax 2.5

2510

where:

alias, database, index, stogroup, table, tablespace, procedure,
trigger, item, view, and dms are names of DB2-ALIAS, DB2-DATABASE,
DB2-INDEX, DB2-STOGROUP, DB2-TABLE, DB2-TBSPACE, DB2-VIEW, and
DB2-DMS repository members. 2510

stogroup
database

tbspace

table

view

alias

index

table-options

view-options

alias-options

index-options

DB2 CREATE ���

procedure
procedure-options

trigger
trigger-options

item
item-options

dms
dms-options

USING exit-routine name-editing options
��

 .
;

ONTO destination

PRINT

NOPRINT

��

�

8 Commands

211

exit-routine is the name of an executive routine.

table-options are:

where:

loc-id is a delimited string of up to 16 characters, giving the name of a DB2 location

owner is a delimited string of up to 8 characters, giving the ID of a specific user.

view-options are:

where loc-id and owner are as defined above.

alias-options are:

index-options are:

where owner is as defined above.

name-editing-options are:

where selection is:

SUPPRESS-RI LOCATION loc-id WITH-LABELS
��

EXPANDSQLID owner
NO-EXPAND

WITH-COMMENTS
� �

LOCATION loc-id WITH-LABELS
��

EXPANDSQLID owner
NO-EXPAND

WITH-COMMENTS
��

WITH-LABELS WITH-COMMENTS
��

EXPANDSQLID owner
NO-EXPAND

��

��

REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

��

WHEN condition
��

ALL

string

(p)
m

��

 ASG-Manager Products Relational Technology Support: DB2

212

where:

m and p are integers in the range 1 to 96

string is a delimited string of not more than 32 printable characters.

nn is an unsigned integer in the range 1 to 96

condition is:

where selection and string are as defined above.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset.

sequential-options are:

where:

rsize is the record length

blksize is the block size.

selection
ANY EQ string

=
NE

��

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

��

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
� �

BLOCKSIZE
blksizeBLOCK-SIZE

� �

8 Commands

213

DB2 DEBUG
DB2 DEBUG produces diagnostic information during DB2 export commands.

Refer to "DB2 DEBUG Syntax" on page 216 for the syntax of the DB2 DEBUG
command.

Use the DB2 DEBUG command to give information enabling you to diagnose errors and
tailor output. DB2 DEBUG can be set to display a selection of information, including one
or more of these:

• Workbench Translation Area (WBTA) command variables

• Contents of the output buffer and associated error messages

• Any user-exits specified.

This information is displayed during execution of an export command.

Any display settings specified are superseded by settings specified when you next use the
DB2 DEBUG command.

You can set debugging either on or off. If you set debugging on, you can select one or
more types of debug options. If you set debugging off, all selected debug options are
turned off.

You can also find out which debug options have been set (if any), and the current display
width.

Displaying Information During Export
To show the current debug settings, enter:

DB2 DEBUG ;

This shows any debug settings specified, and the current display width.

To turn all debugging off, enter:

DB2 DEBUG OFF ;

To turn one or more debug settings on, enter:

DB2 DEBUG ON debug-settings ;

 ASG-Manager Products Relational Technology Support: DB2

214

where debug-settings can be any of these:

• UNVERIFIED-OBJECT

• VERIFIED-OBJECT

• OUTPUT-BUFFER

• EXIT-TABLE

• ENVIRONMENT.

To alter the output display width, enter:

DB2 DEBUG ON debug-option WIDTH w ;

where w is the required display width; this defaults to 75.

Obtaining Different Types of Diagnostic Information
Different debug options give different types of information, at different stages of export.
You can select sets of appropriate debug options to combine displays.

To display the names and contents of all Workbench Translation Area (WBTA)
command variables for a DB2 object, before final SQL name verification, enter:

DB2 DEBUG ON UNVERIFIED-OBJECT ;

To display WBTA command variables for a DB2 object, after final SQL name
verification and before generation of the output, enter:

DB2 DEBUG ON VERIFIED-OBJECT ;

To display the output buffer (showing both the generated output requested and the
corresponding in-context error messages for each line), immediately before it is written to
the destination, enter:

DB2 DEBUG ON OUTPUT-BUFFER ;

To display the current output user-exits, enter:

DB2 DEBUG ON EXIT-TABLE ;

To display the environmental values stored in command variables, enter:

DB2 DEBUG ON ENVIRONMENT ;

8 Commands

215

Output
The output from the DB2 DEBUG command depends on which debug options have
previously been set. Groups of tables are always displayed, giving information about
command variables for the particular export command being processed.

Note:
These tables bear no relation to tables held on your database: They refer to related sets of
command variables.

Command variables have sets of general prefixes, and specific names for each variable.
General prefixes follow Manager Products naming conventions. Each general prefix is
the heading for a table, and starts with mpdy_. Each specific variable is a column in this
table.

For example, in a VERIFIED-OBJECT display, for the command variable
MPDY_OBJ_BASE_MEMBER_TYPE the general prefix is MPDY_OBJ_ and the
specific name is BASE_MEMBER_TYPE. This gives the column
BASE_MEMBER_TYPE in the table mpdy_obj_ and one entry in this column might be
DB2-DATABASE. This example is demonstrated below:

Variable naming conventions are described in more detail below.

UNVERIFIED-OBJECT and VERIFIED-OBJECT display variables have similar names
to those of variables generated by the DACCESS, DEXPAND, or DRETRIEVE
commands. For example, the variable MPDY_OBJ_MEMBER_TYPE in the
VERIFIED-OBJECT display corresponds to the variable MEMBER_TYPE obtained
from the DACCESS command. Prefixes in UNVERIFIED- or VERIFIED-OBJECT
displays relate to the type of object being exported; MPDY_OBJ_ for any type of object,
MPDY_TAB_ for tables, and so on.

In ENVIRONMENT, OUTPUT-BUFFER, and EXIT-TABLE displays, names of
specific variables are self-explanatory. For example, the command variable
MPDY_ENV_CURR_COMMAND in the ENVIRONMENT display gives the name of
the command currently being processed.

OUTPUT-BUFFER displays have two types of variable, prefixed by either
MPDY_OUT_ for the output produced, or MPDY_MESS_ for messages associated with
that output.

BASE_MEMBER_TYPE

'DB2-DATABASE'

mpdy_obj_.vector

 ASG-Manager Products Relational Technology Support: DB2

216

EXIT-TABLE displays are useful when you have some user exits specified; if so, the
names and uses of these output-exits are given.

ENVIRONMENT displays give details of the command being processed or of the current
session.

Refer to "Tailoring Output" on page 109 for details of user exits.

DB2 DEBUG Syntax

where w is the display width.

DB2 DECLARE
DB2 DECLARE generates an SQL DECLARE TABLE statement in COBOL, PL1, or
Assembler language, from a DB2-TABLE or DB2-VIEW repository member.

Refer to "DB2 DECLARE Syntax" on page 219 for the syntax of the DB2 DECLARE
command.

To generate an SQL DECLARE TABLE statement, enter:

DB2 DECLARE language FROM member ;

where:

language is ASSEMBLER (or ALC, ASM, or BAL), PL1 (or PLI, PL/I, or PL/l) or
COBOL.

member is the name of a DB2-TABLE or DB2-VIEW repository member.

The DB2 data type for a column in a table or view is given in the ITEM or GROUP
members named in the CONTAINS attribute of the DB2-TABLE or DB2-VIEW member
from which the SQL statement is being generated.

If you use distributed databases, you can refer to a table or view using a location as part
of that object’s name, to uniquely identify an object across multiple sites.

OFF

ON
VERIFIED-OBJECT

UNVERIFIED-OBJECT
EXIT-TABLE

DB2 DEBUG

WIDTH w
OUTPUT-BUFFER

ENVIRONMENT

<<<<<<< , <<<<<<<

���

 .
;� �

�

8 Commands

217

Generated output contains any NOT NULL and/or NOT NULL WITH DEFAULT
attributes defined in the relevant DB2-TABLE member, or referred to by the relevant
DB2-VIEW member.

Generated output is displayed on the screen. You can tailor this output, file it on the
MP-AID or send it to an external dataset, using output generation options. You can also
tailor output by calling executive routines (user exit routines) at set points (user exits)
during output. This process is known as taking user exits.

The systems administrator can tailor output by altering the DB2 profile.

Refer to "Tailoring Output" on page 109 for details of the DB2 profile, and user exits.

Refer to "Documenting DB2 Security Information" on page 96 for details of generating
column data types.

Taking User Exits
To take a user exit, enter:

DB2 DECLARE language FROM member USING exit-routine ;

where:

member is the name of a DB2-TABLE or DB2-VIEW repository member.

exit-routine is the name of an executive routine.

Note:
The systems administrator can alter your DB2 Profile so that a default user exit is always
taken with the DB2 DECLARE command. The USING keyword overrides any default
user exits set this way.

Refer to "Tailoring Output" on page 109 for further details of user exits.

Specifying an Owner
To name an object with a specified owner (overriding any owner specified in the relevant
member), enter:

DB2 DECLARE language FROM member SQLID owner ;

where:

member is a DB2-TABLE or DB2-VIEW member

owner is a delimited string of up to 8 characters, giving the ID of a specific user.

 ASG-Manager Products Relational Technology Support: DB2

218

Specifying a Location
To name a location for a DB2-TABLE or DB2-VIEW member, overriding any location
defined for that member, enter:

DB2 DECLARE language FROM member LOCATION location ;

where:

member is a DB2-TABLE or DB2-VIEW member

location is a delimited string of up to 16 characters, giving the object’s location.

Refer to "Interrogating Your DB2 Dictionary Schema" on page 102 for details of deriving
external names.

Refer to Chapter 9, "Repository Member Types," on page 331 for details of the
DB2-USER member type.

Expanding Nested Data Structures
If you have used EXPAND or NO-EXPAND on the corresponding DB2 CREATE
command for this member, you should use the same keywords for this command, by
entering either:

DB2 DECLARE language FROM member EXPAND ;

or:

DB2 DECLARE language FROM member NO-EXPAND ;

where member is the name of a DB2-TABLE or DB2-VIEW repository member.

EXPAND clauses in the DB2-TABLE member are used as the default.

Refer to "DB2 CREATE" on page 206 for use of the EXPAND/NO-EXPAND keywords.

Refer to Chapter 9, "Repository Member Types," on page 331 for details of the EXPAND
attribute.

Output Generation Options
Use the ONTO keyword to direct your generated SQL statements to a specific
destination. This destination can be:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset.

8 Commands

219

Refer to "Output Generation Options" on page 324 for further details of output generation
options.

Name Editing Options
Use the REPLACE/REPLACING, INSERTING, and DROPPING keywords to edit
generated data names before they are output.

Refer to "Name Editing Options" on page 327 for further details of name editing options.

DB2 DECLARE Syntax

where:

table is the name of a DB2-TABLE repository member

view is the name of a DB2-VIEW repository member

owner is a delimited string of up to 8 characters, giving the authorization ID of a
particular user

loc-id is a delimited string of up to 16 characters, giving the name of a DB2 location

exit is the name of a user-created executive routine.

name-editing-options are:

ASSEMBLER

ALC
ASM
BAL

COBOL
PLI

fromDB2 DECLARE table
view

PL1

PL/I
PL/1

���

EXPANDLOCATION loc-id
NO-EXPAND

SQLID owner
��

name-editing-optionsUSING exit
��

 .
;

ONTO destination

PRINT

NOPRINT

� �
�

��

REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

� �

WHEN condition
� �

 ASG-Manager Products Relational Technology Support: DB2

220

where selection is:

where:

m and p are integers in the range 1 to 96

string is a delimited string of not more than 32 printable characters.

nn is an unsigned integer in the range 1 to 96

condition is:

where selection and string are as defined above.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset.

sequential-options are:

where:

rsize is the record length

blksize is the block size.

ALL

string

(p)
m

��

selection
ANY EQ string

=
NE

��

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

� �

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
��

BLOCKSIZE
blksizeBLOCK-SIZE

��

8 Commands

221

DB2 DROP
DB2 DROP generates an SQL DROP statement and an optional impact analysis report.

Refer to "DB2 DROP Syntax" on page 225 for the syntax of the DB2 DROP command.

To generate an SQL DROP statement, and an impact analysis report, for a DB2 object
from its repository member definition, enter:

DB2 DROP member ;

where member is the name of a DB2-ALIAS, DB2-DATABASE, DB2-INDEX,
DB2-STOGROUP, DB2-TABLE, DB2-TBSPACE, DB2-PROCEDURE,
DB2-TRIGGER, ITEM, or DB2-VIEW repository member.2.5

To generate SQL DROP SYNONYM statements, use the DB2 SYNONYM command.

If you execute an SQL DROP statement in your DB2 environment, the named DB2
object and all DB2 objects dependent upon it are dropped. For example, if you drop a
table, all views and indexes dependent on that table are also dropped. So the DB2 DROP
command also generates an impact analysis report, showing the impact of dropping the
specified member in your DB2 environment.

You can generate SQL DROP statements which DB2 may reject (such as an SQL
statement to drop a storage group containing table spaces), as the impact analysis report
generated can be useful (for example, if a disk-pack holding the storage group became
unavailable, you would want to know what is impacted).

The generated output is displayed on the screen. You can tailor the SQL DROP
statements, file them on the MP-AID, or send them to an external dataset, using output
generation options. You can also tailor the SQL statements by calling executive routines
(user exit routines) at set points (user exits) during output. This process is known as
taking user exits. You cannot alter the impact analysis report using these methods; use the
REPORT keyword for this purpose.

The systems administrator can tailor both the SQL statements and the impact analysis
report by altering the DB2 profile.

For further details of tailoring, refer to "Tailoring Output" on page 109.

 ASG-Manager Products Relational Technology Support: DB2

222

The Impact Analysis Report
By default, an impact analysis report is generated with the DB2 DROP command,
showing a hierarchy of the impacted repository members (and so the objects in the DB2
environment) that would be dropped or affected if that SQL DROP statement is applied to
your DB2 environment. The first line in the report gives the member to be dropped. Each
subsequent line shows an impacted member.

Each line is numbered, in case of duplication. Entries that appear twice are only given in
full once; the next appearances refer to the line number of the first appearance. For each
line, the following is also shown, from left to right:

• The relationship between the impacted member and the member one level of indent
above it

• The name of the member

• The owner for that member (if an owner exists)

• The type of member

Synonyms of members are also reported.

An impact analysis report is not generated when a DB2 DROP command is applied to a
DB2-INDEX member, as only the specified index would be dropped or affected by the
SQL DROP INDEX statement.

To deliberately suppress the generation of the impact analysis report, enter:

DB2 DROP member NO-IMPACT-REPORT ;

Members impacted by the DB2 DROP command are reported but are not removed from
the repository. If you drop the object from the DB2 environment, you should update the
repository to reflect the changes, unless you intend to later re-create the object and those
dependent on it. The impact analysis report will help you carry out these updates.

Tailoring the Impact Analysis Report
The impact analysis report is tailorable, with a set of rules defining how the repository is
searched. The systems administrator can tailor the table which drives the search
algorithm to allow extra search paths to be taken which may be used by the user in
addition to the standard relationships.

Refer to Chapter 5, "Export to DB2," on page 105 for details of tailoring.

8 Commands

223

You can also use specific keywords with the DB2 DROP command to alter the report
width (overriding the default of 80 characters) and the size of each indent in a nested
structure (overriding the default of 5 characters). To specify the width of the report, enter:

DB2 DROP member REPORT WIDTH w ;

where w is the new report width. This must be between 50 and 246 characters.

To specify the size of each indent in a nested structure, enter:

DB2 DROP member REPORT INDENT i ;

where i is the width of each new indent. This must be between 5 and 20 characters.

You can use KEPT-DATA lists to help manage the impacted members. To store all
members displayed in the report in an unnamed KEPT-DATA list, enter:

DB2 DROP member REPORT KEEP ;

To store all reported members in a named KEPT-DATA list, enter:

DB2 DROP member REPORT KEEP IN kept-name ;

where kept-name is the name of a KEPT-DATA list.

To add members to an existing KEPT-DATA list, enter either:

DB2 DROP member REPORT ALSO ;

or

DB2 DROP member REPORT ALSO IN kept-name ;

 ASG-Manager Products Relational Technology Support: DB2

224

Example of the Structure of the Impact Analysis Report

The impact analysis report has the structure as seen in Figure 31:

Figure 31 • Impact Analysis Report Structure2.5

where process-member is a PROGRAM, MODULE, SYSTEM, or MMR-SYSTEM
member.

For example, if a DB2-TABLE member is specified in a DB2 DROP command then an
SQL DROP TABLE statement is generated, which if applied to your DB2 environment
will drop that table and any views and indexes dependent on it. Synonyms for and
privileges on the dropped table and views will also be dropped. SQL statements which
refer to these tables and views will be affected. SQL statements can be imbedded in
programs themselves contained in plans.

DB2-STOGROUP

DB2-INDEX DB2-TBSPACE DB2-DB2 DATABASE

DB2-
PRIVILEGE
(DATABASE)

DB2-TBSPACE DB2-PRIVILEGE
(USE)

DB2-TABLE

DB2-
VIEW

DB2-USER
(SYNONYM)

DB2- DB2-
PLANINDEX PRIVILEGE

(ALL/TABLE)
TABLE
DB2-

(constraint)

process-
member

DB2-
VIEW

DB2- DB2- DB2-
USER PRIVILEGE

process-
PLAN

(SYNONYM) (ALL/TABLE)
member

DB2-
PROCEDURE

DB2- DISTINCT

DB2-

PRIVILEGE
(USE)

TYPETRIGGER

8 Commands

225

Taking User Exits
To take a user exit, enter:

DB2 DROP member USING exit-routine ;

where:

member is the name of a DB2-DATABASE, DB2-INDEX, DB2-STOGROUP,
DB2-TABLE, DB2-TBSPACE, or DB2-VIEW repository member

exit-routine is the name of an executive routine.

Note:
The systems administrator can alter your DB2 Profile so that a default user exit is always
taken when you use the DB2 DROP command. The USING keyword overrides any
default user exits set this way.

Refer to "Tailoring Output" on page 109 for further details of user exits.

Output Generation Options
Use the ONTO keyword to direct your generated output to:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset.

Refer to "Output Generation Options" on page 324 for further details of output generation
options.

DB2 DROP Syntax

where member is the name of a DB2-ALIAS, DB2-DATABASE, DB2-INDEX,
DB2-STOGROUP, DB2-TABLE, DB2-TBSPACE, DB2-PROCEDURE,
DB2-TRIGGER, ITEM, or DB2-VIEW repository member.

NO-IMPACT-REPORT

DB2 DROP member

REPORT details

���

USING user-exit
��

 .
;

ONTO destination

PRINT

NOPRINT

� �

�

 ASG-Manager Products Relational Technology Support: DB2

226

details are:

where:

w is an integer between 50 and 246

i is an integer between 5 and 20

k is the name of a KEPT-DATA list.

where user-exit is the name of an executive routine.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset.

sequential-options are:

where:

rsize is the record length

blksize is the block size.

KEEPINDENT i
IN k

WIDTH w
ALSO

��

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

� �

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
��

BLOCKSIZE
blksizeBLOCK-SIZE

� �

8 Commands

227

DB2 GRANT and DB2 REVOKE
DB2 GRANT and DB2 REVOKE generates an SQL GRANT or REVOKE statement for
a DB2 object from its definition in a DB2-PRIVILEGE repository member.

Refer to "DB2 GRANT and DB2 REVOKE Syntax" on page 230 for the syntax of the
DB2 GRANT command.

Use the DB2 GRANT or DB2 REVOKE commands to generate respectively SQL
GRANT or REVOKE statements, by entering either:

DB2 GRANT member ;

or

DB2 REVOKE member ;

where member is the name of a DB2-PRIVILEGE member.

The SQL GRANT statement will include the WITH GRANT OPTION keyword if the
WITH-GRANT-OPTION attribute is present in the DB2-PRIVILEGE member.

You can generate SQL statements to change privileges for all DB2-USER members
referred to directly or indirectly by the DB2-PRIVILEGE member. You can also generate
SQL statements to change privileges for DB2-USER members representing single-user
IDs only.

Generated output displays on the screen. You can tailor this output, file it on the
MP-AID, or send it to an external dataset, using output generation options. You can also
tailor output by calling executive routines (user exit routines) at set points (user exits)
during output. This process is known as taking user exits.

The systems administrator can tailor output by altering the DB2 profile.

Refer to "Tailoring Output" on page 109 for details of the DB2 profile and user exits.

Specifying an Owner of an Object
To generate SQL statements to change privileges for a table or view, and override the
current owner name, enter either:

DB2 GRANT member SQLID owner ;

or

DB2 REVOKE member SQLID owner ;

 ASG-Manager Products Relational Technology Support: DB2

228

where:

member is the name of a DB2-PRIVILEGE repository member

owner is a delimited string of up to 8 characters, giving the ID of a specific user.

Expanding Nested Data Structures
If you have used EXPAND or NO-EXPAND on the corresponding DB2 CREATE
command for a DB2-PRIVILEGE member, you should use the same keywords for this
command, by entering:

DB2 GRANT member EXPAND ;

or

DB2 GRANT member NO-EXPAND ;

or

DB2 REVOKE member EXPAND ;

or

DB2 REVOKE member NO-EXPAND ;

where member is the name of a DB2-PRIVILEGE repository member.

EXPAND attributes in the DB2-TABLE member are used as the default.

Refer to "DB2 CREATE" on page 206 for use of the EXPAND/NO-EXPAND keywords.

Refer to the DB2-TABLE member type in Chapter 9, "Repository Member Types," on
page 331 for further details about the EXPAND attribute.

Changing Privileges on an Expanded Range of Users
To generate SQL statements to change privileges for all DB2-USER members referred to
directly or indirectly by a DB2-PRIVILEGE member, enter:

DB2 GRANT member USER-EXPANSION FULL ;

or

DB2 REVOKE member USER-EXPANSION FULL ;

where member is the name of a DB2-PRIVILEGE member.

8 Commands

229

Alternatively, to generate SQL statements to change privileges for DB2-USER members
representing single-user IDs only, enter either:

DB2 GRANT member USER-EXPANSION SINGLE-IDS ;

or

DB2 REVOKE member USER-EXPANSION SINGLE-IDS ;

By default, only privileges on DB2-USER members referred to directly from the
DB2-PRIVILEGE member are changed.

Specifying the Grantor of a Privilege
Use the BY-GRANTOR keyword to generate a BY keyword in an SQL REVOKE
statement, by entering:

DB2 REVOKE member BY-GRANTOR ;

where member is the name of a DB2-PRIVILEGE repository member.

Taking User Exits
To take a user exit, enter either:

DB2 GRANT member USING exit-routine ;

or

DB2 REVOKE member USING exit-routine ;

where:

member is the name of a DB2-PRIVILEGE member

exit-routine is the name of an executive routine.

Note:
The systems administrator can alter your DB2 Profile so that a default user exit is always
taken when you use the DB2 GRANT or DB2 REVOKE commands. The USING
keyword overrides any default user exits set this way.

Refer to "Tailoring Output" on page 109 for further details of user exits.

 ASG-Manager Products Relational Technology Support: DB2

230

Name Editing Options
You can use the REPLACING/REPLACE, INSERTING, and DROPPING keywords to
edit generated data names before they are output.

Refer to "Name Editing Options" on page 327 for further details of name editing options.

Output Generation Options
Use the ONTO keyword to direct your generated output to:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset.

Refer to "Output Generation Options" on page 324 for further details of output generation
options.

DB2 GRANT and DB2 REVOKE Syntax

where options are:

where:

privilege is the name of a DB2-PRIVILEGE member

owner is a delimited string of up to 8 characters, giving the authorization ID of a
particular user.

exit-routine is the name of an executive routine.

DB2

BY-GRANTOR

GRANT options
REVOKE options

���

name-editing-optionsUSING exit-routine
� �

 .
;

ONTO destination

PRINT

NOPRINT

� �

�

privilege
EXPANDSQLID owner
NO-EXPAND

� �

SINGLE-IDSUSER-EXPANSION
FULL

��

8 Commands

231

name-editing-options are:

where selection is:

where:

m and p are integers in the range 1 to 96

string is a delimited string of not more than 32 printable characters

nn is an unsigned integer in the range 1 to 96.

condition is:

where selection and string are as defined above.

destination is:

where:

name is the name of a USER-MEMBER

file is the name of a sequential or partitioned dataset.

��

REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

��

WHEN condition
� �

ALL

string

(p)
m

� �

selection
ANY EQ string

=
NE

� �

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER
USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

��

 ASG-Manager Products Relational Technology Support: DB2

232

sequential-options are:

where:

rsize is the record length

blksize is the block size.

DB2 LIST CYCLES
DB2 LIST CYCLES identifies the cycles found in the DB2 design present in the
Workbench Design Area (WBDA) and to list the tables which appear within each cycle.

A cycle is a path of relationships connecting a table to itself, where the arrows
representing the relationships all flow in the same direction. The tables appearing in this
path are said to be in cyclic order.

To list the tables in each cycle in cyclic order, beginning with the table (in the cycle)
having the lowest WBDA number, enter:

DB2 LIST CYCLES ;

To list the tables in each cycle alphanumerically, enter:

DB2 LIST CYCLES ALPHABETICALLY ;

Named tables in the cycle are listed in alphanumerical order of table name, followed by
any unnamed tables in order of WBDA number.

The DB2 LIST CYCLES command can be executed only if the WBDA contains
normalized data. Otherwise, the command is terminated and a message of explanation is
output. If the WBDA contains normalized data but no DB2 design, the command causes
the DB2 design to be generated before producing the list.

For each DB2 table appearing in a cycle, the list includes its WBDA number, its primary
key, its name (if one has been assigned) and, if the table appears in more than one cycle,
the keyword MULTIPLE.

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
��

BLOCKSIZE
blksizeBLOCK-SIZE

� �

8 Commands

233

In Figure 32, an example is pictured of a cycle with its path of tables and connecting
relationships:

Figure 32 • A Cycle with its Path of Tables and Connecting Relationships

Refer to "Output from the DB2 LIST CYCLES Command" on page 83 for details of the
DB2 LIST CYCLES command output

Refer to "Introduction to Referential Structures and Cycles" on page 31 for a further
discussion of cycles and how they can affect design decisions.

DB2 LIST CYCLES Syntax

DB2 LIST TABLES
DB2 LIST TABLES produces a list of all or some of the tables appearing in the DB2
design generated in the Workbench Design Area (WBDA).

To list all the tables in the DB2 design in order of WBDA number, enter:

DB2 LIST TABLES ;

To list all tables alphanumerically, enter:

DB2 LIST TABLES ALPHABETICALLY ;

Named tables are listed in alphanumeric order of table name, followed by any unnamed
tables in order of WBDA number.

To list some of the tables in the DB2 design, you make your selection based on table type.
You can select any number of table types in the command.

STUDENT

COURSE

LANGUAGE

 .
;DB2 LIST CYCLES

ALPHABETICALLY
�� �

�

 ASG-Manager Products Relational Technology Support: DB2

234

To list a selection of tables in order of WBDA number, enter:

DB2 LIST TABLES selection ;

where selection is one or more of these keywords:

• ROOTS indicates that every root parent table is to be listed

• PARENTS is used to select every parent table for listing whether it is a root parent
or a table which is both a parent and a dependent

• LEAFS or LEAVES is used to select every leaf dependent table for listing

• DEPENDENTS indicates that every dependent table is to be listed whether it is a
leaf dependent or a table which is both a dependent and a parent

• INDEPENDENT indicates that every table is to be listed which is neither a parent
nor a dependent table, that is, a table which does not participate in any foreign key
relationships.

To list all selected named tables alphanumerically followed by any selected unnamed
tables in order of WBDA number, enter:

DB2 LIST TABLES ALPHABETICALLY selection ;

where selection is defined as above.

The command can be executed only if the WBDA contains normalized data. Otherwise,
the command is terminated and a message of explanation is output. If the WBDA
contains normalized data but no DB2 design, the command causes the DB2 design to be
generated before producing the list.

For each DB2 table selected, the list includes the WBDA number of the table, its primary
key, its name (if one has been assigned), and its type.

Refer to "Output from the DB2 LIST TABLES Command" on page 81 for details of the
DB2 LIST TABLES command output.

DB2 LIST TABLES Syntax

where table-type is:

DB2 LIST TABLES
ALPHABETICALLY

�� �

 .
;

table-type

�� �

LEAFSPARENTS
LEAVES

ROOTS
� �

INDEPENDENTSDEPENDENTS
� �

8 Commands

235

DB2 PLOT CLUSTER
DB2 PLOT CLUSTER produces a DB2 Cluster Plot of all or some of the tables in the
DB2 design.

Refer to "DB2 PLOT CLUSTER Syntax" on page 237 for the syntax of the DB2 PLOT
CLUSTER command.

Use the DB2 PLOT CLUSTER command to produce a DB2 Cluster Plot of all or some of
the tables in the DB2 design generated in the Workbench Design Area (WBDA).

You must enter one (and only one) of the following keywords or clauses in the command
to indicate your selection of the tables to be displayed:

• The ALL keyword to select all the tables in the WBDA

• The NAME clause for a selection of tables by name

• The NUMBERS clause for a selection of tables by number.

If you also enter the keyword ALPHABETICALLY, the selected tables will be output
alphanumerically.

For each selected table, the output shows a diagram in cluster form of its foreign key
relationships, if any, with the other tables in the DB2 design. When all the clusters have
been displayed, the DB2 Design Relationship Matrix is output. This is a two-dimensional
table which summarizes all of the relationships holding between the tables of the DB2
design, whether or not they have been selected for display.

The command can be used only if the WBDA contains normalized data. If there is no data
in the WBDA, or if it has not been normalized, you are informed and the command is
terminated. If the WBDA contains normalized data but no DB2 design, this command
causes the DB2 design to be generated and then produces the plot.

Refer to "Output from the DB2 PLOT CLUSTER Command" on page 63 for further
details of the output of the DB2 PLOT CLUSTER command.

The USING FORMAT option of this command is available only if you have the User
Formatted Output facility installed. It allows you to specify a valid FORMAT member of
the dictionary in order to tailor the format in which the tables are output.

 ASG-Manager Products Relational Technology Support: DB2

236

Displaying All the Tables in the Workbench Design Area
To produce a DB2 Cluster Plot displaying every table in the Workbench Design Area
(WBDA), enter:

DB2 PLOT CLUSTER ALL ;

This displays the tables in order of WBDA number. To display all the tables
alphanumerically, enter:

DB2 PLOT CLUSTER ALL ALPHABETICALLY ;

This causes the named tables to be displayed in alphanumeric order of table name,
followed by any unnamed tables in ascending order of WBDA number.

Displaying Tables Selected by Name
To produce a DB2 Cluster Plot displaying tables selected by name, enter:

DB2 PLOT CLUSTER NAMES name-list ;

where name-list is a list of one or more valid names of tables present in the
Workbench Design Area (WBDA). Table names in name-list must be separated by
commas.

Tables display in the order listed unless the keyword ALPHABETICALLY is specified in
the command.

To display the tables in alphanumeric order of table name, enter:

DB2 PLOT CLUSTER NAMES name-list ALPHABETICALLY ;

For example:

DB2 PLOT CLUSTER NAMES DEPARTMENT,OFFICE,EMPLOYEE ALPHABETICALLY ;

Displaying Tables Selected by Number
This is the only way to select tables in the Workbench Design Area (WBDA) which have
not yet been named.

To produce a DB2 Cluster Plot of tables selected by their WBDA number, enter:

DB2 PLOT CLUSTER NUMBERS range-list ;

where range-list is a list of one or more numeric ranges, separated by commas, each
of the form:

 TO n
m� �

8 Commands

237

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.
Every table is selected whose WBDA number appears in the list or falls within a range
appearing in the list. Tables are displayed in the order listed unless the keyword
ALPHABETICALLY is also specified in the command.

To display the listed tables alphanumerically, enter:

DB2 PLOT CLUSTER NUMBERS range-list ALPHABETICALLY ;

This causes the named tables in range-list to be displayed in alphanumeric order of
table name, followed by any unnamed tables in ascending order of WBDA number. An
example of this option is shown below:

DB2 PLOT CLUSTER NUMBERS 1,4,6 TO 12,17 TO 20,25 ALPHABETICALLY ;

Displaying Tables in a Specific Format
To produce a cluster plot of tables in a format tailored to your requirements, enter:

DB2 PLOT CLUSTER selection USING FORMAT format-member ;

where:

format-member is the name of a previously defined FORMAT repository member.
Tables are output according to the specifications in the FORMAT member.

selection is one of the following:

• ALL

• NAMES name-list

• NUMBERS range-list

DB2 PLOT CLUSTER Syntax

DB2 PLOT CLUSTER ALL
NAMES name-list
NUMBERS range-list

�� �

ALPHABETICALLY
� �

 .
;

USING FORMAT format-member
�� �

 ASG-Manager Products Relational Technology Support: DB2

238

where:

name-list is a list of validly named tables in the WBDA. If there are two or more
names in the list they must be separated by commas

range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.

format-member is the name of a previously defined, valid FORMAT member.

DB2 PLOT REFERENTIAL-STRUCTURES
DB2 PLOT produces a DB2 Referential Structures Plot of one or all of the referential
structures in the DB2 design.

Refer to "DB2 PLOT Syntax" on page 243 for the syntax of the DB2 PLOT command.

Use the DB2 PLOT REFERENTIAL-STRUCTURES command to produce the DB2
Referential Structures Plot, a consolidated overview display of one or all of the referential
structures in the DB2 design present in the Workbench Design Area (WBDA).

The command can be executed only if the WBDA contains normalized data. Otherwise,
the command is terminated and a message of explanation is output. If the WBDA
contains normalized data but no DB2 design, the command causes the DB2 design to be
generated before producing the list.

A referential structure can be described as a set of tables and relationships such that each
table in the set is either a parent or a dependent of itself or of some other table in the set.
Every table that is a parent or dependent in the set is part of exactly one referential
structure.

 TO n
m ��

8 Commands

239

Figure 33 illustrates a referential structure in the case of the Department Model example:

Figure 33 • Referential Structure in the Case of the Department Model

Refer to "Department Model Example" on page 37 for details of the Department Model
example.

For each referential structure displayed in a DB2 Referential Structures Plot, one or more
individual hierarchical plots are produced, each starting with a seed table. The seed used
in the (first) plot for the first referential structure displayed is called the primary seed.
Any other plots required for any of the structures displayed are called additional plots
beginning with additional seeds.

Refer to "Layout" on page 72 for a full description of the Referential Structures Plot and
its layout.

You can display all of the referential structures of the DB2 design present in the WBDA
by specifying the ALL keyword in the command, or you can indicate that only a single
referential structure is to be displayed by including a SEED clause specification. Either
ALL or SEED must be specified.

You can further specify:

• The keyword PARENTS to indicate that only parent tables and relationships are to
be displayed in the plot, or

• The keyword DEPENDENTS to indicate that only dependent tables and
relationships are to be displayed.

If both parent and dependent tables and relationships are to be displayed, then neither
PARENTS nor DEPENDENTS should be specified.

DEPARTMENT-NO
EMPLOYEE-NO

DEPARTMENT-MEMBER EMPLOYEE

DEPARTMENT

DEPARTMENT-NO

OFFICE-LOCATION
DEPARTMENT-NO

OFFICE-DEPARTMENT

MANAGER-NO

MANAGER

OFFICE

OFFICE-
LOCATION

EMPLOYEE-NO

 ASG-Manager Products Relational Technology Support: DB2

240

Refer to "Introduction to Referential Structures and Cycles" on page 31 for a further
discussion of referential structures.

Refer to "Output from the DB2 PLOT REFERENTIAL-STRUCTURES Command" on
page 71 for further details of the DB2 PLOT REFERENTIAL-STRUCTURES command
output.

Displaying All Referential Structures
Use the ALL keyword in the DB2 PLOT REFERENTIAL-STRUCTURES command to
display all of the referential structures of the DB2 design in the DB2 Referential
Structures Plot. For each structure displayed, this will cause one or more hierarchical
plots to be produced representing every table and relationship in the structure. Each
independent table, if any, is also displayed in an additional seed-only plot. Specifying the
ALL keyword is the only way to ensure that every table and relationship in the DB2
design is displayed in the DB2 Referential Structures Plot.

How the tables and relationships are displayed and whether or not each referential
structure can be displayed in a single hierarchical plot, depends on whether one or the
other (or neither) of the PARENTS and DEPENDENTS keywords is also specified in the
command.

To depict each referential structure by a single hierarchical plot, enter:

DB2 PLOT REFERENTIAL-STRUCTURES ALL ;

without specifying either PARENTS or DEPENDENTS.

Then, for each referential structure in the DB2 design, beginning with the seed, the plot
includes the entire referential structure, displaying all the remaining tables in the
structure, both dependent and parent, and all the foreign key relationships.

The seed for each plot is selected automatically, as follows:

• If there are any root parent tables in the DB2 design, the root parent whose number
in the Workbench Design Area (WBDA) is the lowest is chosen as the primary seed

• Each additional seed, in turn, is the lowest numbered root parent table which has not
already been displayed

• If, at any point, there are remaining referential structures in the design (and,
therefore, additional plots required), but no remaining root parent tables, that is,
each remaining structure contains one ore more cycles instead of root parents, then
ASG-DesignManager selects as the next seed the lowest numbered
(non-independent) table remaining in the DB2 design. This is repeated until all the
tables of all the referential structures have been displayed.

• Finally, if there are any independent tables in the DB2 design, each is displayed as a
seed-only additional plot. They are selected for display in order of WBDA number.

8 Commands

241

To display only dependent tables and relationships (following the seed) in each
hierarchical plot, enter:

DB2 PLOT REFERENTIAL-STRUCTURES ALL DEPENDENTS ;

This does not ensure that each referential structure can be displayed in a single
hierarchical plot. Additional plots may be required to complete the display.

Seeds for the plots are selected automatically in the same way as selected when neither
DEPENDENTS nor PARENTS is specified (beginning with the lowest numbered root
parent table in the DB2 design, as indicated above). Thus, a separate hierarchical plot is
produced for each root parent table that has not already been displayed. Although more
than one plot may belong to the same referential structure, the display produced by this
variant of the command is often in the most convenient form for the user.

To display only parent tables and relationships (following the seed) in each hierarchical
plot, enter:

DB2 PLOT REFERENTIAL-STRUCTURES ALL PARENTS ;

Then, as with DEPENDENTS, each referential structure may not be depicted by a single
hierarchical plot. Additional plots may be required.

The seed for each plot is selected automatically, as follows:

• If there are any leaf dependent tables in the DB2 design, the leaf dependent with the
lowest WBDA number is chosen as the primary seed

• Each additional seed, in turn, is the lowest numbered leaf dependent table which has
not already been displayed

• If, at any point, there are remaining referential structures in the design (and,
therefore, additional plots required), but no remaining leaf dependent tables, that is,
each remaining structure contains one or more cycles instead of leaf dependents,
then ASG-DesignManager selects as the next seed the lowest numbered
(non-independent) table remaining in the DB2 design. This is repeated until all the
tables of all the referential structures have been displayed.

• Finally, if there are any independent tables in the DB2 design, each is displayed as a
seed-only additional plot They are selected for display in order of WBDA number.

Thus, a separate hierarchical plot is produced for each leaf dependent table that has not
already been displayed.

 ASG-Manager Products Relational Technology Support: DB2

242

Displaying a Single Referential Structure
Use the SEED clause, with a table specified as seed, in the DB2 PLOT
REFERENTIAL-STRUCTURES command to display all or part of a single referential
structure (or a single independent table) from the DB2 design present in the Workbench
Design Area (WBDA). Just one hierarchical plot is produced.

Starting with the specified seed, the plot displays a related set of tables and their
connecting relationships from the referential structure in which the selected seed appears.
(Recall that a table that participates in a relationship appears in one and only one
referential structure.) How the tables and relationships are displayed and whether or not
the entire referential structure appears in the plot depends on whether one or the other (or
neither) of the PARENTS and DEPENDENTS keywords has also been specified in the
command and also on whether the seed table specified is a parent or dependent (or
independent) table and whether or not it is a root or a leaf.

You can use the DB2 LIST TABLES command to help you choose appropriate seeds,
because the output produced indicates the table type; that is, it identifies root, leaf, parent,
dependent, and independent tables.

To ensure that the hierarchical plot produced represents the entire referential structure in
which the seed appears, enter:

DB2 PLOT REFERENTIAL-STRUCTURES SEED selection ;

without specifying either PARENTS or DEPENDENTS.

where selection is one of the following:

• NUMBER number, or

• NAME name.

where number or name identifies, by WBDA number or table name, respectively,
a non-independent table of the DB2 design.

Then, beginning with the specified seed, the plot includes all of the remaining tables in
the structure, both dependent and parent, and all of the foreign key relationships. (If, on
the other hand, an independent table is specified in the SEED clause, then only the seed
table will be displayed in the plot.)

To display only dependent tables and relationships (following the seed) in the plot, enter:

DB2 PLOT REFERENTIAL-SIRUCTURES SEED selection DEPENDENTS ;

8 Commands

243

No parent relationships are traversed and, therefore, the only tables displayed following
the seed are its descendants in the referential structure. As a consequence, the entire
referential structure in which the seed appears may not be represented in the plot. (If the
specified seed is a leaf table or an independent table, then only the seed table will be
displayed.)

To display only parent tables and relationships (following the seed), enter:

DB2 PLOT REFERENTIAL-STRUCTURES SEED selection PARENTS ;

No dependent relationships are traversed; therefore, no descendants of the seed are
displayed. As a consequence, the entire referential structure in which the seed appears
may not be represented in the plot. (If the specified seed is a root table or an independent
table, then only the seed table will be displayed.)

DB2 PLOT Syntax

where:

number is a table number in the Workbench Design Area

name is a table name.

DB2 POPULATE
DB2 POPULATE populates the repository with DB2-TABLE, DB2-INDEX, and
DB2-VIEW members, generated from the DB2 design, and to produce a report of the
generated members.

Refer to "DB2 POPULATE Syntax" on page 254 for the syntax of the DB2 POPULATE
command.

The DB2 POPULATE command generates dictionary member definitions and populates
the dictionary with them. A report of the generated member definitions is automatically
output.

DB2 PLOT REFERENTIAL-STRUCTURES�� �

 .
;

NUMBER number
 ALL
SEE

NAME name
PARENTS
DEPENDENTS

�� �

 ASG-Manager Products Relational Technology Support: DB2

244

The DB2 POPULATE command generates dictionary member definitions for one or
more of the following member types, from selected tables of the DB2 design in the
Workbench Design Area (WBDA):

• DB2-TABLE

• DB2-INDEX

• DB2-VIEW

Each time you issue the command, a SYSTEM member also can be generated and placed
in the dictionary, containing a list of all the DB2 dictionary members generated by the
command.

The command can be used only if the WBDA contains normalized data. If there is no data
in the WBDA, or if the data has not been normalized, the command is terminated and a
message to that effect is output.

The DB2 POPULATE command will automatically generate the DB2 design if one has
not already been generated. Any unnamed tables will be ignored by the command.

Although the content of a generated DB2 dictionary member definition is only a subset of
the permissible content (which can be added later by a user if required), the generated
definitions are complete enough to be used subsequently to produce valid SQL CREATE
TABLE, CREATE INDEX, and CREATE VIEW statements. (When creating the DB2
object, DB2 will assign default values to all the remaining clauses.)

Each member definition is preceded by an ADD command and followed by a terminator.

DB2 POPULATE automatically generates primary key keywords and foreign key clauses
in DB2-TABLE definitions to support referential integrity, unless you use the NO-RI
option to suppress them. In addition, the command enables you to assign DB2 tables to
specific tablespaces (the TBSPACE option).

The command also allows you to associate a dictionary DB2-USER member (via the
CREATOR-OWNER clause) with the DB2 dictionary members being defined.

You must enter one (and only one) of the following keywords or clauses in the command
to indicate your selection of the DB2 tables in the WBDA to be used in generating the
dictionary definitions:

• The ALL keyword to select all the tables in the WBDA

• The NAMES clause for a selection of tables by name

• The NUMBERS clause for a selection of tables by WBDA number.

If you also enter the keyword ALPHABETICALLY, the definitions are generated (and
displayed) in alphanumeric order of table name.

8 Commands

245

The USING FORMAT option of this command is available only if you have the User
Formatted Output facility installed. It allows you to specify a defined FORMAT member
of the dictionary to control the format in which the member definitions are generated.

You can generate dictionary definitions for any or all of the member types in one
command, but you must specify them in the order in which the corresponding clauses
appear in the command syntax.

By prefixing DB2 POPULATE with a NOPRINT command you can stop any output
being printed.

Refer to ASG-ControlManager User’s Guide for details of the NOPRINT command.

Generating and Populating DB2-TABLE Members
Use the keyword TABLES to generate and populate the dictionary with DB2-TABLE
members, one for each selected table in the Workbench Design Area (WBDA). The name
of the table in the WBDA becomes the name of the generated DB2-TABLE dictionary
member.

To populate the dictionary with DB2-TABLE members, enter:

DB2 POPULATE TABLES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

The command populates the dictionary with DB2-TABLE members which automatically
contain primary key keywords and foreign key clauses to support referential integrity
(RI) unless the keyword NO-RI also appears in the command.

 ASG-Manager Products Relational Technology Support: DB2

246

These clauses are generated for each DB2-TABLE member:

• For each data-view which is the origin of a WBDA dependency represented by the
table, the SEE clause contains a separate data-view FOR 'SOURCE' sub-clause

• The COLUMNS CONTAINS clause of the DB2-TABLE member holds an entry
for each column in the table. Column entries are separated by commas. Each entry
includes the name of the column and, if the column is part of the primary key (that
is, a prime column), the entry also includes the keyword NOT-NULL. The keyword
PRIMARY-KEY is also included for each prime column unless NO-RI is specified
in the command. There may be a CHECK-CONSTRAINT on the column, with an
optional name and at least one CONDITION clause of up to 255 bytes. The
CONDITION may be split over many 255 character strings, each prefixed by the
CONDITION keyword.

• If the table contains any foreign keys and NO-RI has not been specified, a
CONSTRAINT clause is generated for each relationship in which the table
participates as a dependent table

• Each CONSTRAINT clause includes a FOREIGN-KEY clause with one or more
entries, separated by commas, one per column of the foreign key. Each entry
contains the name of the foreign key column and, if the foreign key relationship is
of domain type, a MEMBER subclause which identifies the corresponding prime
column in the parent table.

• A REFERENCES clause giving the name of the parent table also appears in the
generated CONSTRAINT clause

• If specified in the DB2 PREVIEW command, a CREATOR-OWNER clause is
included specifying a dictionary DB2-USER member as the creator or owner of the
DB2 table

• If specified in the DB2 PREVIEW command, an IN tbspace-name clause is
included, specifying the name of a dictionary DB2-TB SPACE member.

Refer to "Generated DB2-TABLE Definition" on page 85 for the syntax of the generated
DB2-TABLE member.

Suppressing Support for Referential Integrity
To specify that the DB2-TABLE members must not contain clauses supporting
referential integrity (RI), enter:

DB2 POPULATE TABLES NO-RI selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

This suppresses the PRIMARY-KEY keywords and foreign key CONSTRAINT clauses
needed to support RI.

8 Commands

247

Generating References to Tablespaces
To generate a reference to a DB2-TBSPACE dictionary member in each generated
DB2-TABLE dictionary definition, enter:

DB2 POPULATE TABLES TBSPACES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

The name of the DB2-TBSPACE member is constructed from the name of the table
concatenated with the suffix '-TBSP', unless you specify an alternative name or an
alternative suffix (or prefix) in the command.

To specify a particular name which will appear in every DB2-TABLE member defined,
enter:

DB2 POPULATE TABLES TESPACES NAME name selection ;

where name is a valid dictionary member name and selection is defined as above.

To specify a prefix or suffix to be concatenated with the table name, enter:

DB2 POPULATE TABLES TBSPACES PREFIX 'string' selection ;

or

DB2 POPULATE TABLES TBSPACES SUFFIX 'string' selection ;

where:

string is a valid dictionary string of up to 31 characters.

selection is defined as above.

Generating and Populating DB2-INDEX Members
To populate the dictionary with a DB2-INDEX member representing a primary index for
each selected table, enter:

DB2 POPULATE INDEXES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

The name of the DB2-INDEX member is constructed from the name of the table
concatenated with the suffix '-IND', unless you specify an alternative suffix (or prefix) in
the command.

 ASG-Manager Products Relational Technology Support: DB2

248

To construct the DB2-INDEX name from the name of the table concatenated with a
specified prefix or suffix, enter:

DB2 POPULATE INDEXES PREFIX 'string' selection ;

or

DB2 POPULATE INDEXES SUFFIX 'string' selection ;

where:

string is a valid dictionary string of up to 31 characters.

selection is defined as above.

These clauses are generated for each DB2-INDEX member:

• The CONTAINS clause of the DB2-INDEX definition holds an entry for each
column in the primary key of the selected table

• The UNIQUE keyword is included, followed by an ON clause containing the name
of the selected table. This indicates that the DB2-INDEX member represents a
unique member.

• For each data-view which is the origin of a WBDA dependency represented by the
table, the SEE clause contains a separate data-view FOR 'SOURCE' subclause

• If specified in the DB2 POPULATE command, a CREATOR-OWNER clause is
also included which names a dictionary DB2-USER member as the creator or
owner of the DB2 index.

Refer to "Generated DB2-INDEX Definition" on page 86 for the syntax of the generated
DB2-INDEX definition.

Generating and Populating DB2-VIEW Members
To populate the dictionary with a DB2-VIEW member for each selected table, enter:

DB2 POPULATE VIEWS selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

The DB2-VIEW member name is constructed from the name of the table concatenated
with the suffix '-VIEW', unless you specify an alternative suffix (or prefix) in the
command.

8 Commands

249

To construct the DB2-VIEW name from the name of the table concatenated with a
specified prefix or suffix, enter:

DB2 POPULATE VIEWS PREFIX 'string' selection ;

or

DB2 POPULATE VIEWS SUFFIX 'string' selection ;

where:

string is a valid dictionary string of up to 31 characters.

selection is defined as above.

These clauses are generated for each DB2-VIEW member definition:

• The CONTAINS clause of the DB2-VIEW definition holds an entry for each
column of the selected table

• The FROM clause contains a reference to the selected table

• The keywords SELECT ALL are included in the definition. They appear between
the CONTAINS clause and the FROM clause and ensure that the SELECT ALL
option will be included in the subselect clause of the SQL CREATE VIEW
statement produced subsequently from the DB2-VIEW member.

• For each data-view which is the origin of a WBDA dependency represented by the
table, the SEE clause contains a separate data-view FOR 'SOURCE' subclause

• If specified in the DB2 PREVIEW command, a CREATOR-OWNER clause is also
included which names a dictionary DB2-USER member as the creator or owner of
the DB2 view.

Refer to "Generated DB2-VIEW Definition" on page 87 for the syntax of the generated
DB2-VIEW definition.

Generating References to a DB2 User
To specify that a selection of members generated from the WBDA belongs to a particular
DB2-USER member, enter: DB2 POPULATE member-type-selection
CREATOR-OWNER DB2-user selection ;

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses.

DB2-user is the name of a dictionary DB2-USER member.

selection is one of the ALL, NAMES, or NUMBERS options used to identify the
tables from which dictionary definitions are to be generated.

 ASG-Manager Products Relational Technology Support: DB2

250

This causes a CREATOR-OWNER clause to be added to the generated dictionary
members. If the DB2-USER member does not exist already in the dictionary, then a
dummy member with that name is set up.

Generating and Populating a SYSTEM Member
To populate the dictionary with a SYSTEM member containing the names of all the DB2
members generated by this command, enter:

DB2 POPULATE member-type-selection AS-SYSTEM system-name selection;

member-type-selection is one or more of the TABLES, INDEXES and VIEWS
clauses.

system-name is the name of the generated SYSTEM dictionary member.

selection is one of the ALL, NAMES, or NUMBERS options used to identify the
tables from which dictionary definitions are to be generated.

The generated SYSTEM definition then is automatically added to the dictionary. The
CONTAINS clause holds the names of all the dictionary members generated by the DB2
POPULATE command.

Refer to "Generated SYSTEM Definition" on page 88 for the syntax of the generated
SYSTEM member.

Selecting Tables in the Workbench Design Area
When issuing the DB2 POPULATE command, you must specify which tables in the
Workbench Design Area (WBDA) you want to use to generate dictionary definitions.

To specify all the tables in the WBDA enter:

DB2 POPULATE member-type-selection ALL ;

where member-type-selection is one or more of the TABLES, INDEXES, and
VIEWS clauses.

The tables are selected in ascending order of their WBDA numbers unless
ALPHABETICALLY also appears in the command.

To specify the tables by name, enter: DB2 POPULATE member-type-selection
NAMES name-list ;

where:

member-type-selection is defined as above.

name-list is a list of one or more valid names of tables present in the WBDA.

8 Commands

251

Consecutive names must be separated by commas. The tables are selected in the order in
which their names appear in name-list unless ALPHABETICALLY is also specified.

To specify the tables by WBDA number, enter:

DB2 POPULATE member-type-selection NUMBERS range-list ;

where:

member-type-selection is defined as above.

range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

where m and n are valid WBDA numbers and n, if it appears, is greater than m. Every
table is selected whose WBDA number appears in the list or falls within a range
appearing in the list. Definitions are generated and reported in the order listed unless the
keyword ALPHABETICALLY is also specified in the command.

To specify that the tables are to be selected in alphanumeric order of table name, enter:

DB2 POPULATE member-type-selection selection ALPHABETICALLY ;

where:

member-type-selection is defined as above.

selection is one of the ALL, NAMES, or NUMBERS options used to identify the
tables from which dictionary definitions are to be generated.

Tailoring Generated Definitions
To generate and populate DB2 dictionary definitions in a format tailored to your
requirements, enter: DB2 POPULATE member-type-selection selection
USING FORMAT format-member ;

where:

member-type-selection is one or more of the TABLES, INDEXES. and VIEWS
clauses.

selection is one of the ALL, NAMES, or NUMBERS options used to identify the
tables from which dictionary definitions are to be generated.

format-member is the name of a dictionary FORMAT member.

 TO n
m ��

 ASG-Manager Products Relational Technology Support: DB2

252

This outputs the dictionary definitions according to the specifications in the FORMAT
member.

Use the USING FORMAT option to:

• Generate DB2 dictionary definitions compatible with any User Defined Syntax
structure you may have implemented

• Generate dictionary member names conforming to your naming standards

• Generate dictionary definitions preceded by the REPLACE or INSERT command,
instead of the default ADD command.

Combining DB2 POPULATE Command Options
You can generate and populate the dictionary with DB2 member definitions for any
combination of the DB2-TABLE, DB2-INDEX, and DB2-VIEW member types in one
DB2 POPULATE command, and optionally specify any or all of the
CREATOR-OWNER, AS-SYSTEM, and USING-FORMAT clauses at the same time.

In addition to populating the dictionary with the generated member definitions, the DB2
POPULATE command provides a printout of the definitions.

If you want to generate definitions for more than one member type, you must specify the
member type clauses in the command in the following order:

• TABLES clause

• INDEXES clause

• VIEWS clause.

You must also include one of the ALL, NAMES, or NUMBERS clauses in the command
to select the tables in the Workbench Design Area from which to generate the DB2
member definitions.

Examples of the DB2 POPULATE Command
To generate and populate a DB2-TABLE member:

• For a table named DEPARTMENT,

• With no clauses for referential integrity (RI), and

• Belonging to a system called DB2-SYSTEM-TEST,

enter:

DB2 POPULATE TABLES NO-RI AS-SYSTEM DB2-SYSTEM-TEST NAMES DEPARTMENT
;

8 Commands

253

To generate and populate DB2-TABLE and DB2-INDEX members:

• For all the tables in the WBDA,

• Including clauses to support RI,

• Constructing each DB2-INDEX name from the table name concatenated with the
suffix 'TEST', and

• Specifying that the selected tables are to be processed in alphanumeric order of
table name,

enter:

DB2 POPULATE TABLES INDEXES SUFFIX 'TEST' ALL ALPHABETICALLY ;

To generate and populate DB2-INDEX and DB2-VIEW members:

• For tables in the WBDA selected by WBDA number,

• With each DB2-INDEX definition name constructed from the table name
concatenated with the default suffix '-IND',

• Constructing each DB2-VIEW definition name from the table name concatenated
with the prefix 'TEST', and

• Specifying that all the generated DB2-INDEX and DB2-VIEW definitions must
reference a DB2-USER member named USER1,

enter:

DB2 POPULATE INDEXES VIEWS PREFIX 'TEST' CREATOR-OWNER USER1
NUMBERS 1 TO 3, 5 ;

To generate and populate DB2-TABLE and DB2-VIEW members:

• For all tables in the WBDA,

• Suppressing clauses to support RI,

• Specifying that all the generated DB2-TABLE members must reference a
DB2-TBSPACE member named DEP-TBSP, and

• Formatting the output according to a format definition named FMT-REPL,

enter:

DB2 POPULATE TABLES NO-RI TBSPACES NAME DEP-TBSP VIEWS ALL USING
FORMAT FMT-REPL ;

 ASG-Manager Products Relational Technology Support: DB2

254

DB2 POPULATE Syntax

where tables-clause is:

where:

name is an alphanumeric string of up to 32 characters, conforming to the rules for a valid
Manager Products repository member name.

string is an alphanumeric string of up to 31 characters, conforming to the rules for a
valid Manager Products repository member name.

indexes-clause is:

where string is defined as above.

views-clause is:

where string is defined as above.

where:

DB2-user is an alphanumeric string of up to 32 characters, conforming to the rules for a
valid Manager Products repository member name.

DB2 POPULATE�� �

tables-clause
indexes-clause

tables-clause

tables-clause indexes-clause

views-clause

� �

AS-SYSTEM system-nameCREATOR-OWNER DB2-user
� �

ALL
NAMES name-list
NUMBERS range-list

ALPHABETICALLY
� �

 .
;

USING FORMAT format-member
�� �

TABLES

NAME name
PREFIX 'string'

NO-RI

SUFFIX 'string'

TBSPACES
��

INDEXES
PREFIX 'string'
SUFFIX 'string'

���

�

VIEWS
PREFIX 'string'
SUFFIX 'string'

�� �

�

8 Commands

255

system-name is an alphanumeric string of up to 32 characters, conforming to the rules
for a valid Manager Products repository member name.

name-list is a list of validly named tables in the WBDA. If there are two or more
names in the list they must be separated by commas.

range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.

format-member is the name of a previously defined, valid FORMAT member.

DB2 PREVIEW
DB2 PREVIEW generates and reports repository member definitions from DB2 tables,
indexes, and views in the DB2 design.

Refer to "DB2 PREVIEW Syntax" on page 265 for the syntax of the DB2 PREVIEW
command.

The DB2 PREVIEW command generates dictionary member definitions for one or more
of the following member types, from selected tables of the DB2 design in the Workbench
Design Area (WBDA):

• DB2-TABLE

• DB2-INDEX

• DB2-VIEW.

Each time you issue the command, a SYSTEM member also can be generated, containing
a list of all the DB2 dictionary members generated by the command.

The command can be used only if the WBDA contains normalized data. If there is no data
in the WBDA, or if the data has not been normalized, the command is terminated and a
message to that effect is output.

The DB2 PREVIEW command will automatically generate the DB2 design if one has not
already been generated. Any unnamed tables will be ignored by the command.

The generated definitions are not added to the dictionary, but are displayed so that you
can check that they meet your database requirements. Each definition is preceded by an
ADD command and followed by a terminator.

 TO n
m� �

 ASG-Manager Products Relational Technology Support: DB2

256

Once you are satisfied with the generated definitions, they can be added to the dictionary
using the DB2 POPULATE command.

Although the content of a generated DB2 dictionary member definition is only a subset of
the permissible content (which can be added later by a user if required), the generated
definitions are complete enough to be used subsequently to produce valid SQL CREATE
TABLE, CREATE INDEX, and CREATE VIEW statements. (When creating the DB2
object, DB2 will assign default values to all the remaining clauses.)

Each member definition is preceded by an ADD command and followed by a terminator.

DB2 PREVIEW automatically generates primary key keywords and foreign key clauses
in DB2-TABLE definitions to support referential integrity, unless you use the NO-RI
option to suppress them. In addition, the command enables you to assign DB2 tables to
specific tablespaces (the TBSPACE option).

The command also allows you to associate a dictionary DB2-USER member (via the
CREATOR-OWNER clause) with the DB2 dictionary members being defined.

You must enter one (and only one) of the following keywords or clauses in the command
to indicate your selection of the DB2 tables in the WBDA to be used in generating the
dictionary definitions:

• The ALL keyword to select all the tables in the WBDA

• The NAMES clause for a selection of tables by name

• The NUMBERS clause for a selection of tables by WBDA number.

If you also enter the keyword ALPHABETICALLY, the definitions are generated (and
displayed) in alphanumeric order of table name.

The USING FORMAT clause allows you to specify a defined dictionary FORMAT
member of the dictionary to control the format in which the definitions are generated. It is
available only if you have the User Formatted Output facility installed.

You can generate dictionary definitions for any or all of the member types in one
command, but you must specify them in the order in which the corresponding clauses
appear in the command syntax.

8 Commands

257

Generating and Previewing DB2-TABLE Definitions
Use the keyword TABLES to generate and preview a DB2-TABLE dictionary definition
for each selected table in the Workbench Design Area (WBDA). The name of the table in
the WBDA becomes the name of the generated DB2-TABLE member.

To generate and preview DB2-TABLE definitions, enter:

DB2 PREVIEW TABLES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

The command generates a DB2-TABLE definition for each selected table. The definition
automatically contains PRIMARY-KEY keywords and foreign key CONSTRAINT
clauses to support referential integrity (RI) unless you also specify the keyword NO-RI in
the command to indicate that they are to be suppressed.

These clauses are generated for each DB2-TABLE member:

• For each data-view which is the origin of a WBDA dependency represented by the
table, the SEE clause contains a separate data-view FOR 'SOURCE' subclause

• The COLUMNS CONTAINS clause of the DB2-TABLE member holds an entry
for each column in the table. Column entries are separated by commas. Each entry
includes the name of the column and, if the column is part of the primary key (that
is, a prime column) the entry also includes the keyword NOT-NULL. The keyword
PRIMARY-KEY is also included for each prime column unless NO-RI is specified
in the command.

• CHECK-CONSTRAINT, if present on a column, may be named and will have a
CONDITION clause - split into 255-character strings.

• If the table contains any foreign keys and NO-RI has not been specified, a
CONSTRAINT clause is generated for each relationship in which the table
participates as a dependent table

• Each CONSTRAINT clause includes a FOREIGN-KEY clause with one or more
entries, separated by commas, one per column of the foreign key. Each entry
contains the name of the foreign key column and, if the foreign key relationship is
of domain type, a MEMBER subclause which identifies the corresponding prime
column in the parent table.

• A REFERENCES clause giving the name of the parent table also appears in the
generated CONSTRAINT clause

• If specified in the DB2 PREVIEW command, a CREATOR-OWNER clause is
included specifying a dictionary DB2-USER member as the creator or owner of the
DB2 table

• If specified in the DB2 PREVIEW command, an IN tbspace-name clause is
included, specifying the name of a dictionary DB2-TBSPACE member.

 ASG-Manager Products Relational Technology Support: DB2

258

Refer to "Generated DB2-TABLE Definition" on page 85 for the syntax of the generated
DB2-TABLE definition.

Suppressing Support for Referential Integrity
To specify that the DB2-TABLE definitions must not contain clauses supporting
referential integrity (RI), enter:

DB2 PREVIEW TABLES NO-RI selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

This suppresses the PRIMARY-KEY keywords and foreign key CONSTRAINT clauses
needed to support RI.

Generating References to Tablespaces
To generate a reference to a DB2-TBSPACE dictionary member in each generated
DB2-TABLE dictionary definition, enter:

DB2 PREVIEW TABLES TBSPACES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

The name of the DB2-TBSPACE member is constructed from the name of the table
concatenated with the suffix '-TBSP', unless you specify an alternative name or an
alternative suffix (or prefix) in the command.

To specify a particular name which will appear in every DB2-TABLE member defined,
enter:

DB2 PREVIEW TABLES TBSPACES NAME name selection ;

where:

name is a valid dictionary member name.

selection is defined as above.

To specify a prefix or suffix to be concatenated with the table name, enter:

DB2 PREVIEW TABLES TBSPACES PREFIX 'string' selection ;

or

DB2 PREVIEW TABLES TBSPACES SUFFIX 'string' selection ;

8 Commands

259

where:

string is a valid dictionary string of up to 31 characters.

selection is defined as above.

Generating and Previewing DB2-INDEX Definitions
To specify that you want a DB2-INDEX definition, representing a primary index, to be
generated for each selected table, enter:

DB2 PREVIEW INDEXES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

The name of the DB2-INDEX member is constructed from the name of the table
concatenated with the suffix '-IND', unless you specify an alternative suffix (or prefix) in
the command.

To construct the DB2-INDEX name from the name of the table concatenated with a
specified prefix or suffix, enter:

DB2 PREVIEW INDEXES PREFIX 'string' selection

or

DB2 PREVIEW INDEXES SUFFIX 'string' selection

where:

string is a valid dictionary string of up to 31 characters.

selection is defined as above.

These clauses are generated for each DB2-INDEX definition:

• The CONTAINS clause of the DB2-INDEX definition holds an entry for each
column in the primary key of the selected table

• The UNIQUE keyword is included, followed by an ON clause containing the name
of the selected table. This indicates that the DB2-INDEX member represents a
unique member.

• For each data-view which is the origin of a WBDA dependency represented by the
table, the SEE clause contains a separate data-view FOR 'SOURCE' subclause

• If specified in the DB2 PREVIEW command, a CREATOR-OWNER clause is also
included which names a dictionary DB2-USER member as the creator or owner of
the DB2 index.

 ASG-Manager Products Relational Technology Support: DB2

260

Generating and Previewing DB2-VIEW Definitions
To specify that you want a DB2-VIEW definition to be generated for each selected table,
enter:

DB2 PREVIEW VIEWS selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify
the tables from which dictionary definitions are to be generated.

The name of the DB2-VIEW definition is constructed from the name of the table
concatenated with the suffix '-VIEW', unless you specify an alternative suffix (or prefix)
in the command.

To construct the DB2-VIEW definition’s name from the table name concatenated with a
specified prefix or suffix, enter:

DB2 PREVIEW VIEWS PREFIX 'string' selection

or

DB2 PREVIEW VIEWS SUFFIX 'string' selection

where:

string is a valid dictionary string of up to 31 characters.

selection is defined as above.

These clauses are generated for each DB2-VIEW definition:

• The CONTAINS clause of the DB2-VIEW definition holds an entry for each
column in the selected table

• The FROM clause contains a reference to the selected table

• The keywords SELECT ALL are included in the definition. They appear between
the CONTAINS clause and the FROM clause and ensure that the SELECT ALL
option will be included in the subselect clause of the SQL CREATE VIEW
statement produced subsequently from the DB2-VIEW member.

• For each data-view which is the origin of a WBDA dependency represented by the
table, the SEE clause contains a separate data-view FOR 'SOURCE' subclause

• If specified in the DB2 PREVIEW command, a CREATOR-OWNER clause is also
included which names a dictionary DB2-USER member as the creator or owner of
the DB2 view.

Refer to Chapter 9, "Repository Member Types," on page 331 for the syntax of the
DB2-VIEW member type.

8 Commands

261

Generating References to a DB2 User
To specify that a selection of members generated from the Workbench Design Area
(WBDA) belongs to a particular DB2-USER member, enter:

DB2 PREVIEW member-type-selection CREATOR-OWNER db2-user selection
;

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses.

db2-user is the name of a dictionary DB2-USER member.

selection is one of the ALL, NAMES, or NUMBERS options used to identify the
tables from which dictionary definitions are to be generated.

This causes a CREATOR-OWNER clause to be added to the generated DB2 dictionary
definitions. If the DB2-USER member does not exist already in the dictionary, then a
dummy member is set up for that name.

Generating and Previewing a SYSTEM Definition
To generate and preview a SYSTEM definition containing the names of all the DB2
definitions generated by this command, enter:

DB2 PREVIEW member-type-selection AS-SYSTEM system-name selection ;

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses.

system-name is the name of the generated SYSTEM dictionary definition.

selection is one of the ALL, NAMES, or NUMBERS options used to identify the
tables from which dictionary definitions are to be generated.

The CONTAINS clause in the generated SYSTEM definition holds the names of all the
dictionary member definitions generated by this DB2 PREVIEW command.

Refer to Chapter 3, "Generated SYSTEM Definition," on page 88 for the syntax of the
SYSTEM member type generated by the DB2 PREVIEW command.

 ASG-Manager Products Relational Technology Support: DB2

262

Selecting Tables in the Workbench Design Area
When issuing the DB2 PREVIEW command, you must specify the tables in the
Workbench Design Area (WBDA) from which you want to generate dictionary
definitions for previewing.

To specify all the tables in the WBDA, enter:

DB2 PREVIEW member-type-selection ALL ;

where member-type-selection is one or more of the TABLES, INDEXES, and
VIEWS clauses.

The tables are selected in ascending order of their WBDA numbers unless
ALPHABETICALLY also appears in the command.

To specify the tables by name, enter:

DB2 PREVIEW member-type-selection NAMES name-list ;

where:

member-type-selection is defined as above.

name-list is a list of one or more valid names of tables present in the WBDA.
Consecutive names must be separated by commas. The tables are selected in the order in
which their names appear in name-list unless ALPHABETICALLY is also specified.

To specify the tables by WBDA number, enter:

DB2 PREVIEW member-type-selection NUMBERS range-1ist ;

where:

member-type-selection is defined as above.

range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

where m and n are valid WBDA numbers and n, if present, is greater than m. Every table
is selected whose WBDA number appears in the list or falls within a range appearing in
the list. Definitions are generated and reported in the order listed unless the keyword
ALPHABETICALLY is also given in the command.

 TO n
m� �

8 Commands

263

To specify that the tables are to be selected in alphanumeric order of table name, enter:

DB2 PREVIEW member-type-selection selection ALPHABETICALLY ;

where:

member-type-selection is defined as above.

selection is one of the ALL, NAMES, or NUMBERS options used to identify the
tables from which dictionary definitions are to be generated.

Tailoring Generated Dictionary Definitions
To generate and preview DB2 dictionary definitions in a format tailored to your
requirements, enter:

DB2 PREVIEW member-type-selection selection USING FORMAT
format-member ;

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses.

selection is one of the ALL, NAMES, or NUMBERS options used to identify the
tables from which dictionary definitions are to be generated.

format-member is the name of a dictionary FORMAT member.

This outputs the dictionary definitions according to the specifications in the FORMAT
member.

Use the USING FORMAT option to:

• Generate DB2 dictionary definitions compatible with any User Defined Syntax
structure you may have implemented

• Generate member names to conform to your own naming standards

• Generate dictionary definitions preceded by the REPLACE or INSERT command,
instead of the default ADD command.

 ASG-Manager Products Relational Technology Support: DB2

264

Combining DB2 PREVIEW Command Options
You can generate dictionary definitions for any combination of the DB2-TABLE,
DB2-INDEX, and DB2-VIEW member types in one DB2 PREVIEW command, and
optionally specify any or all of the CREATOR-OWNER, AS-SYSTEM, and USING-
FORMAT clauses at the same time. If you want to generate definitions for more than one
member type, you must specify the member type clauses in the command in the following
order:

• TABLES clause

• INDEXES clause

• VIEWS clause.

You must also include one of the ALL, NAMES, or NUMBERS clauses in the command,
to select the tables in the Workbench Design Area from which to generate the DB2
member definitions.

Examples of the DB2 PREVIEW Command
To generate and preview a DB2-TABLE definition:

• For a Workbench Design Area (WBDA) table named DEPARTMENT,

• With no clauses for referential integrity (RI) and

• Belonging to a system called DB2-SYSTEM-TEST,

enter:

DB2 PREVIEW TABLES NO-RI AS-SYSTEM DB2-SYSTEM-TEST NAMES DEPARTMENT
;

To generate and preview DB2-TABLE and DB2-INDEX definitions:

• For all the tables in the WBDA,

• Including clauses to support RI,

• Constructing each DB2-INDEX name from the table name concatenated with the
suffix 'TEST', and

• Specifying that the selected tables are to be processed in alphanumeric order of
table name,

enter:

DB2 PREVIEW TABLES INDEXES SUFFIX 'TEST' ALL ALPHABETICALLY ;

8 Commands

265

To generate and preview DB2-INDEX and DB2-VIEW definitions:

• For tables in the WBDA selected by WBDA number, with each DB2-INDEX
definition name constructed from the table name concatenated with the default
suffix '-IND',

• Constructing each DB2-VIEW definition name from the table name concatenated
with the prefix 'TEST', and

• Specifying that all the generated DB2-INDEX and DB2-VIEW definitions must
reference a DB2-USER member named USER1,

enter:

DB2 PREVIEW INDEXES VIEWS PREFIX 'TEST' CREATOR-OWNER USER1
NUMBERS 1 TO 3, 5 ;

To generate and preview DB2-TABLE and DB2-VIEW definitions:

• For all tables in the WBDA,

• Suppressing clauses to support RI,

• Specifying that all the generated DB2-TABLE definitions must reference a
DB2-TBSPACE definition named DEP-TBSP, and

• Formatting the output according to a format definition named FMT-REPL,

enter:

DB2 PREVIEW TABLES NO-RI TBSPACES NAME DEP-TBSP VIEWS ALL
USING FORMAT FMT-REPL ;

DB2 PREVIEW Syntax
DB2 PREVIEW�� �

tables-clause
indexes-clause

tables-clause

tables-clause indexes-clause

views-clause

��

CREATOR-OWNER DB2-user
� �

AS-SYSTEM system-name
ALL
NAMES name-list
NUMBERS range-list

ALPHABETICALLY
� �

 .
;

USING FORMAT format-member
� �

�

 ASG-Manager Products Relational Technology Support: DB2

266

where tables-clause is:

where:

name is an alphanumeric string of up to 32 characters, conforming to the rules for a valid
Manager Products repository member name.

string is an alphanumeric string of up to 31 characters, conforming to the rules for a
valid Manager Products repository member name.

indexes-clause is:

where string is defined as above.

views-clause is:

where string is defined as above.

where:

DB2-user is an alphanumeric string of up to 32 characters, conforming to the rules for a
valid Manager Products repository member name.

system-name is an alphanumeric string of up to 32 characters, conforming to the rules
for a valid Manager Products repository member name.

name-list is a list of validly named tables in the WBDA. If there are two or more
names in the list they must be separated by commas.

range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.

format-member is the name of a previously defined, valid FORMAT member.

TABLES

NAME name
PREFIX 'string'

NO-RI

SUFFIX 'string'

TBSPACES
� �

INDEXES
PREFIX 'string'
SUFFIX 'string'

��

VIEWS
PREFIX 'string'
SUFFIX 'string'

� �

 TO n
m ��

8 Commands

267

DB2 PRODUCE
DB2 PRODUCE generates either a host language data structure or a table layout from a
DB2-TABLE or DB2-VIEW repository member.

Refer to "DB2 PRODUCE Syntax" on page 273 for the syntax of the DB2 PRODUCE
command.

Use the DB2 PRODUCE command to generate either:

• A host language data structure in Assembler language, PL/1, or COBOL, or

• A table layout describing a table or view documented by repository members

by entering either:

DB2 PRODUCE language FROM member ;

or

DB2 PRODUCE TABLE-LAYOUT FROM member ;

where:

language is ASSEMBLER (or ALC, ASM or BAL), PL1 (or PLI, PL/I or PL/l) or
COBOL.

member is the name of a DB2-TABLE or DB2-VIEW repository member.

Column variables in the host language data structure are generated from the members
named in the CONTAINS attribute of the relevant DB2-TABLE or DB2-VIEW member.
Host language data types are generated for these variables, corresponding to the DB2 data
type of columns in the table or view.

The generated host (and indicator) structures can be referenced by application programs
containing embedded SQL syntax for data manipulation statements.

You can generate (flat), two-level data structures for use within SQL statements (as these
conform with the DB2 language pre-processors), or (nested) multi-level data structures
(useful in COBOL or PL1 programs).

You can automatically generate SQL DECLARE TABLE statements with your host
language data structure or table layout

Generated host language data structures are displayed on the screen. You can tailor this
output, file it on the MP-AID, or send it to an external file, using output generation
options. You can also tailor output by calling executive routines (user exit routines) at set
points (user exits) during output. This process is known as taking user exits.

 ASG-Manager Products Relational Technology Support: DB2

268

The systems administrator can tailor output by altering the DB2 profile.

Refer to Chapter 4, "Repository Definition," on page 91 for details of generating column
data types.

Refer to Chapter 5, "Export to DB2," on page 105 for details of user exits, and the DB2
profile.

A table layout displays information about a table or view by listing the following
repository members documenting the structure of that object:

• The DB2-TABLE or DB2-VIEW members (documenting the table/view)

• The GROUP and ITEM members (documenting the columns in the table/view)

• The PROGRAM, MODULE, SYSTEM, and MMR-SYSTEM members
(documenting the constraints, edit procedures, field procedures and validation
procedures of a table).

All attributes of the relevant DB2-TABLE or DB2-VIEW member are given. Information
such as the DB2 data type and length of columns is also displayed.

By printing the table layouts you can produce paper documentation displaying both the
structure and purpose of your tables and views.

Description of Table Layouts For DB2 Tables
These column headings are given in table layouts for DB2 tables:

PKEY. The column is documented in the repository as being a primary key if Y is
specified and is not a primary key if there is no entry. If the position (and sequence) is
documented in the definition, then the position is shown, followed by either (A) for an
ascending sequence, or (D) for a descending sequence.

NULL. The column is defined as not null if N is specified, not null with default values if
D is specified, and nullable if there is no entry.

NAME. The names of the members documenting the table and their columns and edit,
field, and validation procedures.

TYPE. For the member documenting the table or view, TYPE is either DB2-TABLE or
DB2-VIEW. Otherwise, TYPE is either:

• The DB2 data type of a column, if the member is an ITEM or GROUP member
documenting the column

• EDITPROC, FIELDPROC or VALIDPROC, if the member documents an edit,
field or validation procedure

8 Commands

269

LENGTH. The maximum number of bytes to store a value of this column; either
recorded directly in an ITEM member, or the sum of all contained ITEM lengths in a
GROUP member. The length of the row for the table equals the total length of all the
columns. The length is increased by one byte for nullable columns.

REMARKS. The text extracted using the GIVING keyword, plus any referential
constraints for that table.

At the end of the table layout, the contents of the IN attribute in the DB2-TABLE
member are given, in the REMARKS columns.

Description of Table Layouts For DB2 Views
These column headings are given in table layouts for DB2 views:

GRP-BY. A Y shows that the GROUP-BY attribute in the DB2-VIEW member has been
specified; otherwise, the column is blank. Also given in this column are the contents of
any WHERE and HAVING attributes in the DB2-VIEW member, at the end of the table
layout.

The next column heading in the table layout is blank. In this column, CORR may be
displayed for a column, if relevant. If this keyword appears, then the correlation name
itself is given in the next column.

WHERE, HAVING, and FROM. May also be displayed in the second column, at the
end of the table layout, if relevant Details are then shown in the third column (NAME).

NAME, TYPE, LENGTH, REMARKS. As for DB2 tables.

Example of a Table Layout
Figure 34 is an example of a table layout generated from a DB2-TABLE member:

Figure 34 • Table Layout Generated from a DB2-TABLE Member

**
Description Of TB2-Employee
**
PKEY NULL NAME TYPE LENGTH REMARKS
**

TB-DJB-EMPS DB2-TABLE 57
N IT-EMPNO CHAR(6) 6

Y N IT-MIDINIT CHAR(2) 2
N IT-LASTNAME VARCHAR(10) 12 Surname.

IT-JOB CHAR(8) 9 Duties.
IT-SALARY DECIMAL(9,2) 6
MO-FPO2 FIELDPROC
MO-VLO3 VALIDPROC
MO-EP21 EDITPROC

 ASG-Manager Products Relational Technology Support: DB2

270

Expanding Nested Data Structures
If you have used EXPAND or NO-EXPAND on the corresponding DB2 CREATE
command for this member, you should use the same keywords for this command, by
entering either:

DB2 PRODUCE language FROM member EXPAND ;

or

DB2 PRODUCE language FROM member NO-EXPAND ;

or

DB2 PRODUCE TABLE-LAYOUT FROM member EXPAND ;

or

DB2 PRODUCE TABLE-LAYOUT FROM member NO-EXPAND ;

EXPAND clauses in the DB2-TABLE member are used as the default.

Refer to "DB2 CREATE" on page 206 for use of the EXPAND/NO-EXPAND keywords.

Refer to the DB2-TABLE member type in Chapter 9, "Repository Member Types," on
page 331 for further details about the EXPAND clause.

Taking User Exits
To take a user exit, enter either:

DB2 PRODUCE language FROM member USING exit-routine ;

or

DB2 PRODUCE TABLE-LAYOUT FROM member USING exit-routine ;

where exit-routine is the name of an executive routine.

Note:
The systems administrator can alter your DB2 profile so that a default user exit is always
taken with the DB2 PRODUCE command. The USING keyword will override any
default user exits set this way.

Refer to "Tailoring Output" on page 109 for further details of user exits.

8 Commands

271

Generating SQL DECLARE TABLE Statements
To generate SQL DECLARE TABLE statements in addition to a host language data
structure, enter:

DB2 PRODUCE language FROM member-name WITH-DECLARE ;

This has the effect of executing separate DB2 PRODUCE and DB2 DECLARE
commands. However, using the WITH-DECLARE keyword is more efficient.

To specify an owner for the SQL DECLARE TABLE statement (overriding any owner
defined in the member), enter:

DB2 PRODUCE language FROM member SQLID owner WITH-DECLARE ;

where owner is a delimited string of up to 8 characters, giving the ID of a specific user.
To specify a location for the SQL DECLARE TABLE statement (overriding any location
defined for that member), enter either:

DB2 PRODUCE language FROM member LOCATION loc-id WITH-DECLARE ;

where loc-id is a delimited string of up to 8 characters, giving the object’s location.

Note:
You can only generate a DECLARE statement with a corresponding host language data
structure. Therefore, you cannot use the WITH-DECLARE keyword with the
TABLE-LAYOUT option of the DB2 PRODUCE command.

Generating Flat or Nested Data Structures
To generate or display flat (two-level) data structures, enter either:

DB2 PRODUCE language FROM member FOR SQL ;

or

DB2 PRODUCE TABLE-LAYOUT FROM member FOR SQL ;

These structures are valid for use as host structures within SQL statements. For COBOL,
an extra level is generated for variable length fields as required by DB2.

To show intermediate levels as comments, use the SHOW-INTERMEDIATE-LEVELS
keyword after the FOR SQL keyword.

To generate indicator structures for corresponding generated host language data
structures, use the INDICATOR keyword. To generate these structures as arrays, also use
the ARRAY keyword; alternatively, to generate them as structures which match the main
host structure, use the STRUCTURE keyword.

 ASG-Manager Products Relational Technology Support: DB2

272

For example, to generate a flat COBOL data structure from a DB2-TABLE member
named TB-DJB-EMPS, generating a corresponding indicator structure as an array, enter:

DB2 PRODUCE COBOL FROM TB-DJB-EMPS FOR SQL INDICATOR ARRAY ;

Note:
Only use the INDICATOR keyword when generating host language data structures--it
has no purpose when generating a table layout.

To generate or display nested (multi-level) data structures, enter either:

DB2 PRODUCE language FROM member FOR work-store ;

or

DB2 PRODUCE TABLE-LAYOUT FROM member FOR work-store ;

where work-store is either WORKING-STORAGE or WS.

You may alter the suffixes generated by the PRODUCE COBOL command by changing
the contents of these variables:

• MPDY_IND_SUFFIX contains the suffix on generated indicator structure names

• MPDY_JND_ARRAY_SUFF_1 and MPDY_IND_ARRAY_SUFF_2 contain the
suffixes applied to the names generated for indicator arrays

• MPDY_COB_SUFF_1 and MPDY_COB_SUFF 2 contain the suffixes applied to
the names generated in the hist structure for a column that has a variable length.

Refer to Chapter 5, "Export to DB2," on page 105 for further details of these profile
variables.

Adding Additional Information to the Output
Use the GIVING keyword in conjunction with the USING keyword and a named exit to
put the contents of NOTE, DESCRIPTION, or COMMENT in comments in the relevant
language, when generating host language data structures by entering:

DB2 PRODUCE language FROM member GIVING attribute USING exec;

where attribute is the name of any text attribute.

The text attributes for which the exit provided by ASG caters are NOTE,
DESCRIPTION, and COMMENT. The user is free to amend this exit. The exit will also
need to be amended should the user want to put these text attributes or others into the
remarks column when generating a table layout.

This combination of keywords allows you to describe DB2 objects in greater detail than
would otherwise be possible.

8 Commands

273

Name Editing Options
Use the REPLACE/REPLACING, INSERTING, and DROPPING keywords to edit
generated data names before they are output.

Refer to "Name Editing Options" on page 327 for further details of name editing options.

Output Generation Options
Use the ONTO keyword to direct your generated output to a specific destination. This
destination can be:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset.

Refer to "Output Generation Options" on page 324 for further details of output generation
options.

DB2 PRODUCE Syntax

where:

language is:

DB2 PRODUCE
TABLE-LAYOUT

table
view

FROMlanguage� ��

EXPAND SQLID owner
NO-EXPAND LOCATION loc-id

� �

WORKING-STORAGE
SQL sql-optionsFOR USING exit

WS

� �

WITH-DECLARE GIVING attribute name-editing
��

 .
;

ONTO destination

PRINT

NOPRINT

� �

�

ALC
ASSEMBLER
ASM
BAL
COBOL
PLI
PL1
PL/I
PL/1

� �

 ASG-Manager Products Relational Technology Support: DB2

274

table is the name of a DB2-TABLE repository member.

view is the name of a DB2-VIEW repository member.

owner is a delimited string of up to 8 characters, giving the authorization ID of a specific
user (for an SQL DECLARE statement).

loc-id is a delimited string of up to 16 characters, giving the name of a DB2 location
(for an SQL DECLARE statement).

sql-options are:

attribute is any text attribute.

user-exit is the name of an executive routine.

name-editing is:

where selection is:

where:

m and p are integers in the range 1 to 96.

string is a delimited string of not more than 32 printable characters.

nn is an unsigned integer in the range 1 to 96.

condition is:

where selection and string are as defined above.

SHOW-INTERMEDIATE-LEVELS INDICATOR
STRUCTURE
ARRAY

��

��

REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

� �

WHEN condition
� �

ALL

string

(p)
m

� �

selection
ANY EQ string

=
NE

� �

8 Commands

275

destination is:

where:

name is the name of a USER-MEMBER.

file is the name of a sequential or partitioned dataset.

sequential-options are:

where:

rsize is the record length.

blksize is the block size.

DB2 RECALCULATE
DB2 RECALCULATE recalculates sizes of tables or indexes.

Refer to "DB2 RECALCULATE Syntax" on page 277 for the syntax of the DB2
RECALCULATE command.

Use the DB2 RECALCULATE command immediately after using the DB2 SIZE
command to recalculate the size of a DB2 table or index, based on altered specified
values (such as cardinality). The report obtained is identical in form to the report from the
DB2 SIZE command.

Using DB2 RECALCULATE is faster than re-issuing a DB2 SIZE command. You can
therefore experiment more to better understand the impact of different values on object
size.

You can only recalculate sizes immediately after entering a DB2 SIZE command. You
can recalculate sizes any number of times.

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

��

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
��

BLOCKSIZE
blksizeBLOCK-SIZE

� �

 ASG-Manager Products Relational Technology Support: DB2

276

To recalculate a table or index size, enter:

DB2 RECALCULATE changes ;

where changes specify the values you wish to override. If you specify no changes, the
same report as from the previous DB2 SIZE command is given.

Refer to the following items for details of the changes you can specify.

Recalculated values are reported with (Command) beside them. Where possible, values
not given in the command or the member definition default to IBM standard values.

Just as with the DB2 SIZE command, you can obtain a detailed or summary report, and
add to the report using user exits, by using the SUMMARY, DETAIL, and USING
keywords respectively.

Specifying Row Sizes, Cardinality, and Free Pages
To recalculate table or index sizes based on changed minimum or maximum row size,
cardinality, number of free pages, or percentage of free pages, use the
MINIMUM-ROW-SIZE, MAXIMUM-ROW-SIZE, CARDINALITY, FREEPAGE, or
PCTFREE keywords followed by a new value for each.

For example, to recalculate a size of the DB2 table documented by the member
TB-DJB-CUST, with a minimum row size of 6, enter:

DB2 RECALCULATE MINIMUM-ROW-SIZE 6 ;

Specifying an Edit Routine or a Bufferpool
For table size recalculations, you can choose whether an edit routine is to be used
(involving an overhead of 10 bytes), and you can also select a specific bufferpool.

To specify whether or not an edit routine is to be used, enter either:

DB2 RECALCULATE EDITPRDC YES ;

or

DB2 RECALCULATE EDITPROC NO ;

By default (if you do not use this keyword), no edit routines are used.

To specify a bufferpool, enter:

DB2 RECALCULATE BUFFERPOOL buff-poo1 ;

where buff-pool is the bufferpool name: BP0, BP1, BP2, (for 4K page sizes) or
BP32K (for 32K page sizes).

8 Commands

277

Specifying Subpages and Duplicate Key Values
For index size recalculations, you can specify a number of subpages, and an estimated
number of duplicate key values. Duplicate key values are not given in the member
definition, and default to a value of one. Only integral values may be specified.

To recalculate an index size based on an altered number of subpages, enter:

DB2 RECALCULATE SUBPAGES subpgs ;

where:

index is the name of a DB2-INDEX repository member.

subpgs is the number of subpages; either 1, 2, 4, 8, or 16.

To recalculate an index size based on an estimated number of duplicate key values, enter:

DB2 RECALCULATE DUPLICATES duplics ;

where duplics is the estimated number of duplicate key values.

DB2-INDEX Member Types
For DB2-INDEX member types, the DB2 RECALCULATE command will give fixed
length column results which may also be specified with the MINIMUM-ROW-SIZE
keyword.

DB2 RECALCULATE Syntax

where table-options are:

DB2 RECALCULATE table options
index-options

�� �

 .
;

SUMMARY USING exit
DETAILS

�� �

EDITPROC

BUFFERPOOL

DUPLICATES duplics
MINIMUM-ROW-SIZE min
MAXIMUM-ROW-SIZE max

���

YES
NO
BP0
BP1
BP2
BP32K

CARDINALITY c
FREEPAGE fp
PCTFREE percent

� �

 ASG-Manager Products Relational Technology Support: DB2

278

where min, max, c, fp, and percent are integers, with percent being between 0
and 100.

index-options are:

where duplics, min, max, c, fp, and percent are integers, with percent being
between 0 and 100.

Note:
For table-options and index-options do not use the same keyword more than once.

DB2 REPORT
DB2 REPORT produces a DB2 Table Report of all or some of the tables in the DB2
design.

Refer to "DB2 REPORT Syntax" on page 281 for the syntax of the DB2 REPORT
command.

Use the DB2 REPORT command to produce a DB2 Table Report of all or some of the
tables in the DB2 design generated in the Workbench Design Area (WBDA).

You must enter one (and only one) of the following keywords or clauses in the command
to indicate your selection of the tables to be reported:

• The ALL keyword to select all the tables in the WBDA

• The NAME clause for a selection of tables by name

• The NUMBERS clause for a selection of tables by number.

If you also enter the keyword ALPHABETICALLY, the selected tables will be output
alphanumerically.

For each selected table in the WBDA, the report describes the dependencies represented
by the table and the other tables to which it is related.

SUBPAGES

DUPLICATES duplics
MINIMUM-ROW-SIZE min
MAXIMUM-ROW-SIZE max

���

1
2
4
8
16

CARDINALITY c
FREEPAGE fp
PCTFREE percent

� �

8 Commands

279

The command can be used only if the WBDA contains normalized data. If there is no data
in the WBDA, or if it has not been normalized, you are informed and the command is
terminated. If the WBDA contains normalized data but no DB2 design, the command
causes the DB2 design to be generated and then produces the report.

The USING FORMAT option of this command is available only if you have the User
Formatted Output facility installed. It allows you to specify the name of a valid
FORMAT member of the dictionary in order to tailor the format in which the tables are
output.

Refer to "Output from the DB2 REPORT Command" on page 54 for details of the DB2
REPORT command output.

Reporting All the Tables in the Workbench Design Area
To report all the tables in the Workbench Design Area (WBDA), enter:

DB2 REPORT TABLES ALL ;

This outputs the tables in order of WBDA number. To report all the tables
alphanumerically, enter:

DB2 REPORT TABLES ALL ALPHABETICALLY ;

This causes the named tables to be reported in alphanumeric order of table name,
followed by any unnamed tables in ascending order of WBDA number.

Reporting Tables Selected by Name
To report tables selected by name, enter:

DB2 REPORT TABLES NANES name-list ;

where name-list is a list of one or more valid names of tables present in the
Workbench Design Area (WBDA). Table names in name-list must be separated by
commas.

Tables are reported in the order listed unless the keyword ALPHABETICALLY also is
specified in the command.

To report the tables in alphanumeric order of table name, enter:

DB2 REPORT TABLES NAMES name-list ALPHABETICALLY ;

For example:

DB2 REPORT TABLES NAMES DEPARTMENT, OFFICE, EMPLOYEE ALPHABETICALLY
;

 ASG-Manager Products Relational Technology Support: DB2

280

Reporting Tables Selected by Number
Tables in the Workbench Design Area (WBDA) which have not yet been named can be
selected only by number.

To report tables selected by their WBDA number, enter:

DB2 REPORT TABLES NUMBERS range-list ;

where range-list is a list of one or more numeric ranges, separated by commas, each
of the form:

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.
Every table is reported whose WBDA number appears in the list or falls within a range
appearing in the list. Tables are reported in the order listed unless the keyword
ALPHABETICALLY is also specified in the command.

To report the listed tables alphanumerically, enter:

DB2 REPORT TABLES NUMBERS range-list ALPHABETICALLY ;

This causes the named tables in range-list to be reported in alphanumeric order of table
name, followed by any unnamed tables in ascending order of WBDA number.

An example of this option is shown below:

DB2 REPORT TABLES NUMBERS 1,4,6 TO 12,17 TO 20,25 ALPHABETICALLY ;

Reporting Tables in a Specific Format
To report tables in a format tailored to your requirements, enter:

DB2 REPORT TABLES selection USING FORMAT format-member ;

where:

format-member is the name of a previously defined FORMAT member of the
dictionary. Tables are output according to the specifications in the FORMAT member

selection is one of these:

• ALL

• NAMES name-list

• NUMBERS range-list

 TO n
m ��

8 Commands

281

DB2 REPORT Syntax

where:

name-list is a list of validly named tables in the WBDA. If there are two or more
names in the list they must be separated by commas

range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.

format-member is the name of a previously defined, valid FORMAT member.

DB2 SIZE
DB2 SIZE calculates the size of a DB2 table or an index from its repository member
definition.

Refer to "DB2 SIZE Syntax" on page 284 for the syntax of the DB2 SIZE command.

To give a report estimating the size of a table or an index in your DB2 environment, from
a DB2-TABLE or a DB2-INDEX repository member, enter: DB2 SIZE member ;

where member is the name of a DB2-TABLE or DB2-INDEX repository member.

The report gives information about the size of the table or index specified. Extra terms are
used in the "source" column:

Forced If the page size given in the member was too small, it has been forced
to 32K.

Assumed No specified value was found, so the value given is the default
assumed.

Member The value shown is from an attribute in a repository member.

Command The value shown is from a keyword in the command.

DB2 REPORT TABLES

NAMES name-list
ALL

NUMBERS range-list

�� �

ALPHABETICALLY
��

 .
;

USING FORMAT format-member
�� �

 TO n
m ��

 ASG-Manager Products Relational Technology Support: DB2

282

Use the report to determine the amount of primary or secondary storage space needed for
a tablespace (defined in the PRIQTY and SECQTY attributes of DB2-TBSPACE
members), and plan for future data growth.

Examine values and add extra details to the report by calling executive routines (user exit
routines) at set points (user exits) during output. The basic report can only be added to not
changed.

Refer to "Tailoring Output" on page 109 for details of user exits.

How Sizes are Calculated
Calculations take into account all factors affecting a table or index size, including page
sizes (determined from bufferpool sizes), PCTFREE and FREEPAGE values, cardinality
and other factors.

Table or index sizes are given in kilobytes. Row sizes are given in bytes.

Some calculations are given in a minimum...maximum range, whereas others are in a
maximum...minimum range. This is because some calculations are inversely related to
others, so a maximum for one corresponds to a minimum for another.

Table size is estimated by calculating the minimum and maximum size of each row in the
table, and using the number of rows the table contains. The size of a row is given by the
DB2 data type of the columns in the table (given in the relevant ITEM and GROUP
members). Table size estimates give tablespace size estimates, as the size of a tablespace
is equal to the size of the contained table or tables.

The size of a physical row can vary in practice if it contains any variable length columns.
The estimated size uses minimum and maximum sizes for all variable columns, and so
gives the range of sizes for the whole row.

If the column can contain null values (that is the keywords NOT-NULL and
WITH-DEFAULT have not been specified in the DB2-TABLE member’s definition) it is
given an extra byte.

The number of pages required for the table is calculated from the row size according to
the formulas given in the IBM DB2 documentation.

For size calculations, a column with a DB2 data type of DATE requires four bytes of
storage, a column with a DB2 data type of TIME three bytes of storage, and a column
with a DB2 data type of TIMESTAMP 10 bytes of storage.

Refer to "Documenting DB2 Security Information" on page 96 for details of generating
column data types.

For index calculations, the output also shows how many pages are required for each level
of the (b-tree) index, up to the root page.

8 Commands

283

Choosing a Summary or a Detailed Report
To obtain a summary report (the default), enter:

DB2 SIZE member SUMMARY ;

where member is a DB2-TABLE or DB2-INDEX repository member.

To obtain a detailed report, giving the name, data type, and minimum and maximum sizes
for each column, enter:

DB2 SIZE member DETAILS ;

Taking User Exits
To take a user exit, enter:

DB2 SIZE member USING exit-routine ;

where:

member is the name of a DB2-TABLE or DB2-INDEX repository member.

exit-routine is the name of an executive routine.

Refer to "Tailoring Output" on page 109 for details of tailoring generated output.

Specifying Which Columns in an Indexed Table are Nullable
You can obtain greater accuracy in estimating index sizes by knowing which key
columns in the indexed table are nullable (as nullable columns have an extra byte). A
DB2-INDEX member does not show whether an indexing column is nullable or not. This
is given in the definition of the table being indexed.

To accurately determine which columns are nullable, specify that you wish to look up the
NOT NULL attribute in the indexed table, by entering:

DB2 SIZE member NOT-NULL REFER ;

where member is the name of a DB2-INDEX repository member.

This option requires more processing time. You can prevent this look-up process, and so
increase speed, if you know that columns are all either nullable or not nullable. To specify
that all indexed columns are nullable, enter:

DB2 SIZE member NOT-NULL NONE ;

or if all columns are not nullable (the default), enter:

DB2 SIZE member NOT-NULL ALL ;

 ASG-Manager Products Relational Technology Support: DB2

284

Calculations Based On Expanded Data Structures
If you have used EXPAND or NO-EXPAND on the corresponding DB2 CREATE
command for this member, you should use the same keywords for this command, by
entering either:

DB2 SIZE member EXPAND ;

or

DB2 SIZE member NO-EXPAND ;

where member is the name of a DB2-TABLE or DB2-INDEX member. EXPAND
attributes in the DB2-TABLE member are used as the default.

Refer to "DB2 CREATE" on page 206 for use of the EXPAND/NO-EXPAND keywords.

Refer to the DB2-TABLE member type in Chapter 9, "Repository Member Types," on
page 331 for details of the EXPAND attribute.

Time, Date, and Timestamp Usage - Field Allocations
Time, Date, and Timestamp usage fields are allocated (fixed) internal lengths of 3, 4, and
10 bytes respectively.

NON-UNIQUE/UNIQUE - Index Size Calculations
Calculations will be made for an index as NON-UNIQUE provided that the member does
not have UNIQUE specified in its definition. This condition can also be simulated for a
member with the UNIQUE keyword, by invoking the DB2 RECALCULATE command
with a DUPLICATES value greater than 1.

DB2 SIZE Syntax

where:

table is the name of a DB2-TABLE repository member.

report-options are:

index is the name of a DB2-INDEX repository member

DB2 SIZE

index
report-options

table

index-options

���

 .
;

USING user-exit
��

�

EXPAND
NO-EXPAND

SUMMARY
DETAIL

� �

8 Commands

285

index-options are:

where:

report-options are as defined above.

user-exit is the name of an executive routine.

DB2 SYNONYM
DB2 SYNONYM generates SQL CREATE SYNONYM or DROP SYNONYM
statements.

Refer to "DB2 SYNONYM Syntax" on page 287 for the syntax of the DB2 SYNONYM
command.

To generate SQL CREATE SYNONYM or DROP SYNONYM statements from a
DB2-USER repository member, enter either:

DB2 SYNONYM CREATE user ;

or

DB2 SYNONYM DROP user ;

where user is the name of a DB2-USER repository member.

To generate other SQL CREATE or DROP statements, use the DB2 CREATE or DB2
DROP command.

You can generate SQL statements for a table or a view. A separate SQL statement is
generated for each DB2-TABLE or DB2-VIEW member named in the SYNONYMS
attribute of the DB2-USER member. You can also generate the last synonyms in a
DB2-USER member, for example, if new synonyms have been added to an existing list
and you only need to generate the additions.

When you have applied an SQL DROP SYNONYM statement to your DB2 environment,
you should remove or update the relevant DB2-USER member to reflect the changes.

Generated output is displayed on the screen. You can tailor this output, file it on the
MP-AID, or send it to an external dataset, using output generation options. You can also
tailor output by calling executive routines (user exit routines) at set points (user exits)
during output. This process is known as taking user exits.

report-options

NONE
NOT-NULL ALL

REFER

��

 ASG-Manager Products Relational Technology Support: DB2

286

The systems administrator can tailor output using the DB2 profile.

Refer to"Tailoring Output" on page 109 for details of the DB2 profile and user exits.

Refer to the DB2-USER member type in Chapter 9, "Repository Member Types," on
page 331 for an example of an SQL CREATE SYNONYM statement generated by the
DB2 SYNONYM command.

Name Editing Options
Use the REPLACE/REPLACING, INSERTING, and DROPPING keywords to edit
generated data names before they are output.

Refer to "Name Editing Options" on page 327 for further details of name editing options.

Taking User Exits
To take a user exit, enter either:

DB2 SYNONYM CREATE user USING exit-routine ;

or

DB2 SYNONYM DROP user USING exit-routine ;

where exit-routine is the name of an executive routine.

Note:
The systems administrator can alter your DB2 Profile so that a default user exit is always
taken with this command. The USING keyword will override any default user exits set
this way.

Refer to "Tailoring Output" on page 109 for further details of user exits.

Specifying an Owner
To select a DB2-USER member with a specified owner, overriding any owner defined for
that member, enter:

DB2 SYNONYM CREATE user SQLID owner ;

or

DB2 SYNONYM DROP user SQLID owner ;

where owner is a delimited string of up to 8 characters, giving the authorization ID of a
specific user.

8 Commands

287

Output Generation Options
Use the ONTO keyword to direct your generated SQL statements to a specific
destination. This destination can be:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset.

Refer to "Output Generation Options" on page 324 for further details of output generation
options.

Generating the Last Synonyms in a DB2-USER Member
To generate only the last synonyms listed in a DB2-USER member, enter either:

DB2 SYNONYM CREATE user LAST n ;

or

DB2 SYNONYM DROP user LAST n ;

where n is a number, specifying how many synonyms (taken from the end of the list in
the DB2-USER member) are to be selected.

DB2 SYNONYM Syntax

where:

user is the name of a DB2-USER member.

owner is a delimited string of up to 8 characters, giving the authorization ID of a specific
user.

n is an integer specifying how many synonyms are to be selected.

exit is the name of an executive routine.

DB2 SYNONYM
DROP

user
SQLID owner

CREATE� ��

LAST n USING exit name-editing
� �

 .
;

ONTO destination

PRINT

NOPRINT

�� �

 ASG-Manager Products Relational Technology Support: DB2

288

name-editing is:

where selection is:

where:

m and p are integers in the range 1 to 96.

string is a delimited string of not more than 32 printable characters.

nn is an unsigned integer in the range 1 to 96.

condition is:

where selection and string are as defined above.

destination is:

where:

name is the name of a USER-MEMBER.

file is the name of a sequential or partitioned dataset.

<<<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<<<<<<
REPLACE
REPLACING
DROPPING selection

 selection WITH string

INSERTING string ALL
nn
stringAFTER

BEFORE

��

WHEN condition
� �

ALL

string

(p)
m

� �

selection
ANY EQ string

=
NE

� �

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER

USER-MEMBER

 name

SEQUENTIAL file

NEW

sequential-options

NEW
APPEND
REPLACE

PARTITIONED file MEMBER name

REPLACE

� �

8 Commands

289

sequential-options are:

where:

rsize is the record length

blksize is the block size.

EXTRACT DB2
EXTRACT DB2 imports information about DB2 objects from your DB2 environment.

Refer to "EXTRACT DB2 Syntax2.5" on page 295 for the syntax of the EXTRACT
command.

Use the EXTRACT DB2 command to import information about DB2 objects, and store
this information in Procedures Language global variables on the WBTA (WorkBench
Translation Area).

You can import information about these types of object:

You can select objects by their name and owner. If you import information about an
object, information on other objects directly related to it is also imported.

You can then use the imported information to generate repository members which
document the DB2 objects. The member’s definitions will include attributes documenting
the relationships of the objects to one another.

If the definition of an object refers to another object on which information is not
imported, then the referenced object is added to the repository as a dummy member, if the
referenced object is not already in the repository. Examples of referenced objects are
DBRMs, and field, edit, and validation procedures.

• columns • packages • table spaces

• databases • plans • types

• indexes • storage groups • views

• owners • tables

FORMAT VARIABLE
FIXED

RECORD-SIZE
RECORDSIZE

rsize
��

BLOCKSIZE
blksizeBLOCK-SIZE

��

 ASG-Manager Products Relational Technology Support: DB2

290

Refer to ASG-Manager Products Procedures Language for further details of global
variables.

Ownership of a parent object is the same as that of its children. For example, if you
import information about a DB2 table you can document the table, and its columns and
ownership in the repository. Tables with which it has referential constraints would be
referenced objects.

Refer to the ASG-DictionaryManager User’s Guide for further details of parent, children,
and referenced objects.

Importing Information About DB2 Objects
To import information about a selection of DB2 objects into the Manager Products
environment, enter:

EXTRACT DB2 object-type object-name-selection ;

where:

object-type is one of the keywords DATABASE, INDEX, PACKAGE, PLAN,
STOGROUP, TABLE, TBSPACE, VIEW, TYPE, PROCEDURE, FUNCTION, or
TRIGGER. It identifies the type of object.2.5

object-name-selection identifies the names of the objects and is either:

• The name of one or more objects separated by commas

• A combination of characters and "?" and "*" symbols which together match the
names of a selection of objects

Each object name must be the name (excluding any owner qualifier) of the object as it is
known on the DB2 catalog. The owner ID of each object defaults to your Manager
Products Logon Identifier.

If your Manager Products Logon Identifier is different than the authorization ID of the
owner of the DB2 object you can only import information about it if you specify the
correct authorization ID in the CREATOR keyword of the EXTRACT DB2 command.

To import information about DB2 tables stored in specific tablespaces, enter:

EXTRACT DB2 object-type object-name-selection TBSPACE
object-type object-name-selection;

8 Commands

291

Importing Information About Objects Owned by any Owner
To import information about objects owned by particular owners, enter:

EXTRACT DB2 object-type object-name-selection CREATOR
owner-selection ;

where owner-selection identifies the authorization IDs of the owners of the objects
and is either:

• The authorization IDs of one or more owners separated by commas

• A combination of characters and "?" and "*" symbols which together match the
authorization IDs of a selection of owners

Selecting Object Names and Owner Authorization IDs
With one EXTRACT command you can import information about one or more objects
owned by one or more owners, using the "?" and "*" symbols to match the names of
objects and the authorization IDs of the owners of those objects.

The "?" symbol represents any single character. For example, if you specify an object
name of EMP-REC and an authorization ID of ???? in an EXTRACT command then all
objects named EMP-REC owned by any owner with a four-character authorization ID are
selected.

The "*" symbol represents any string of zero or more characters. For example, if you
specify an object name of * and an authorization ID of DJB in an EXTRACT command
then all objects owned by the user with the authorization ID DJB are selected.

You can combine "?" and "*" symbols together and with other characters. For example, if
you specify an object name of TAB-* and an authorization ID of * in an EXTRACT
command, then objects are selected, owned by any owner, that have names (of any
character length) staring with TAB-.

Note:
You cannot represent object names or authorization IDs with "?" and "*" symbols in the
same keyword of an EXTRACT command in which you have also specified a list of
object names or authorization IDs separated by commas.

 ASG-Manager Products Relational Technology Support: DB2

292

Expanding Packagelist Entries when Importing Plans
You may bind a plan with packagelist entries that contain the "*" character to indicate
ALL in any of the entry’s LOCATION, COLLECTION, or PACKAGE columns.

When you import such a plan, you may specify whether any collection or package
columns in the pklist entry containing "*" are expanded. If the LOCATION specified is
remote, however, you may not expand the pklist entry, because the necessary information
regarding the collections and packages at that location is not available. If the LOCATION
column contains "*", the requested details are extracted from the local location only.

Command variable mpdy_expand_pklist, defined in exec MPDY42DFLT, controls
expansion. If expansion of the pklist entries is required, this variable should be set to :Y:,
its default setting.

For example, if SYSIBM.SYSPKLIST contains an entry *.*.PK1 where PLANNAME is
the plan being extracted and package PK1 is bound in collections COLL1, COLL2,
COLL3, these members would be generated:

• PK-COLLI-PK1

• PK-COLL2-PK1

• PK-COLL3-PK1

• CL-COLL1

• CL-COLL2

• CL-COLL3.

If only one DB2-PACKAGE member is to be generated regardless of any multiple
selections in the list, then MPDY_EXPAND_PKLIST should be set to :N:. The naming
standards are then as seen in Table 21.

Packages on local subsystem are: COLL1.PK1

Table 21 Naming Standards

SYSIBM.SYSPKLIST Entry Members Generated

REMOTLOC.*.* PK-RENOTLOC-ALL-ALL
CL-REMOTLOC-ALL
LO-RENOTLOC

(SOL-ALIAS *)
SQL-ALIAS *

..* PK-ALL-ALL-ALL
CL-ALL-ALL
LO-ALL

SQL-ALIAS *
SQL-ALIAS *
SQL-ALIAS *

8 Commands

293

When the indicator MPDY_EXPAND_PKLIST = :N:, it is irrelevant whether the
location specified is local or remote.

The SQL alias allows generation of PKLIST(*.*.* , *.PKl ...) during DB2 BIND.

The Information Which Can Be Imported from DB2
Table 22 shows the information which can be imported from DB2:

COLL1.* PK-COLL1-ALL
CL-COLL1

SQL-ALIAS *

*.PKl PK-ALL-PK1
CL-ALL

*
SQL-ALIAS *

LOCALLOC.*.* PK-LOCALLOC-ALL-ALL
CL-LOCALLDC-ALL
LO-LOCALLOC

SQL-ALIAS *
SQL-ALIAS *

Table 22 Information Which Can Be Imported from DB2

EXTRACT
Command

Objects on which
Information is Imported

Repository Member
Type

EXTRACT DB2
TABLE

A table and:

• Its owner

• Its columns and their field
procedures

• Its validation procedure

• Its edit procedure

• The table space it is in

• The tables with which it has
referential constraints.

DB2-TABLE

DB2-user

ITEMs

* MODULEs

* MODULEs

* MODULEs

* DB2-TBSPACE

* DB2-TABLEs

EXTRACT DB2
VIEW

A view and:

• Its owner

• The columns that make up the
view

• The tables upon which the view
is based

• The views upon which the view
is based.

DB2-VIEW

DB2-USER

* ITEMs

* DB2-TABLEs

* DB2-VIEWs

Table 21 Naming Standards

SYSIBM.SYSPKLIST Entry Members Generated

 ASG-Manager Products Relational Technology Support: DB2

294

EXTRACT DB2
INDEX

An index and:

• Its owner

• The storage group it is in

• The table it is indexing

• The columns forming the index
key.

DB2-INDEX

DB2-USER

* DB2-STOGROUP

* DB2-TABLE

* ITEMs

EXTRACT DB2
PLAN

A plan and:

• Its owner

• Its bound DBRMs

• Its bound PACKAGES.

DB2-PLAN

DB2-USER

* MODULEs

DB2-PACKAGE
DB2-LOCATION
DB2-COLLECTION

EXTRACT DB2
DATABASE

A database and:

• Its owner

• The default storage group
associated with it.

DB2-DATABASE

DB2-USER

* DB2-STOGROUP

EXTRACT DB2
TBSPACE

A table space and:

• Its owner

• The storage group it is in

• The database it is in.

DB2-TBSPACE

DB2-USE

DB2-STOGROUP

* DB2-DATABASE

EXTRACT DB2
ALIAS

An alias and:

• Its owner

• The location the alias refers to.

DB2-ALIAS

DB2-USER

DB2-LOCATION

EXTRACT DB2
STOGROUP

A storage group and:

• Its owner.

DB2-STOGROUP

DB2-USER

EXTRACT DB2
PACKAGE

A packagelist entry DB2-PACKAGE
DB2-COLLECTION

EXTRACT DB2
PROCEDURE2.5

A procedure definition DB2-PROCEDURE

EXTRACT DB2
FUNCTION2.5

A function definition DB2-PROCEDURE

Table 22 Information Which Can Be Imported from DB2

EXTRACT
Command

Objects on which
Information is Imported

Repository Member
Type

8 Commands

295

Note:
Those member types marked with an asterisk (*) are referenced objects, created as
dummy members, if they do not exist already on the repository.

EXTRACT DB2 Syntax2.5

where object is:

where:

object-selection is a combination of characters and ? and * symbols, matching the
name of a selection of external objects.

object-list is a list of one or more names of objects to be extracted.

where "?" represents any single character and "*" represents a string of (any number of)
any characters.

EXTRACT DB2
TRIGGER2.5

A trigger. DB2-TRIGGER

EXTRACT DB2
TYPE2.5

Distinct type. ITEM

Table 22 Information Which Can Be Imported from DB2

EXTRACT
Command

Objects on which
Information is Imported

Repository Member
Type

EXTRACT DB2 ALIAS object
DATABASE
INDEX
PACKAGE
PLAN
STOGROUP
TBSPACE
VIEW

���

TABLE object
TEMPORARY TBSPACE object
AUXILIARY

PROCEDURE object
TRIGGER object
TYPE object

 .
;

CREATOR id-selection

id-list
�������

� �

�

object-selection
�����������

object-list

��

 ASG-Manager Products Relational Technology Support: DB2

296

id-selection is a combination of characters and "?" and "*" symbols matching the
authorization IDs of a selection of owners.

id-list is a list of one or more names of IDs to be extracted.

where "?" and "*" are as defined above.

ISQL
ISQL dynamically submits SQL statements to your relational environment.

Refer to "ISQL Syntax" on page 298 for the syntax of the ISQL command.

Submitting SQL Statements
You can use the ISQL command to dynamically submit SQL statements:

• Entered in the Command Area

• Printed in the current buffer

• Filed in a USER-MEMBER

to your relational environment. By default, SQL statements in the current buffer are
submitted.

To submit SQL statements entered in the Command Area, enter:

ISQL sql-statement ;

where sql-statement is any SQL statement that can be dynamically prepared for
execution. The SQL statement can be up to 255 characters long including leading,
embedded, and trailing blanks. SQL SELECT statements must conform to the
specifications of a full select statement.

To submit SQL statements printed in the current buffer, enter:

ISQL ;

The current buffer can be a Command Mode, Edit, Update, or Lookaside Buffer.

To submit SQL statements filed in a USER-MEMBER, enter:

ISQL user-member-name ;

where user-member-name is the name of the USER-MEMBER in which the SQL
statements are filed.

8 Commands

297

You can dynamically submit to your DB2 or SQL/DS environment SQL statements
generated by a previous Manager Products DB2 or SQL command. For example, you can
generate a CREATE TABLE statement with the DB2 CREATE or SQL CREATE
commands. The CREATE TABLE statement can be either printed or filed in a
USER-MEMBER.

The ISQL command will attempt to submit the entire contents of the USER-MEMBER or
current buffer except for comment lines.

Comment lines preceded by two or more hyphens are displayed by the DB2 or SQL
command and describe the SQL statement generated.

If the output generated by the DB2 or SQL command includes Manager Products
messages then they are also submitted and may cause the SQL statement to be rejected by
DB2 or SQL/DS. SQL statements filed in a USER-MEMBER do not include messages.
You can also use the SWITCH MESSAGES command to stop Manager Products
messages being displayed in the current buffer.

Refer to the ASG-ControlManager User’s Guide for details of the SWITCH MESSAGES
command.

Restricting the Number of Rows of Result Tables
You can specify the number of rows in a result table to be printed within the Manager
Products environment in response to SQL SELECT statements submitted with the ISQL
command.

To restrict the size of result tables, enter:

ISQL n ;

where n is the maximum number of rows to be printed. The first n rows in a result table
are printed.

The size restriction applies to all result tables you generate with the ISQL command for
the rest of the current Manager Products session.

You can change the maximum size of result tables by entering another ISQL command
specifying an alternative number of rows.

The size restriction does not apply to result tables printed by SELECT statements
submitted dynamically to your relational environment from within executive routines.
You can specify the number of rows to be printed by an executive routine by including an
SQLI_ROWS variable in the executive routine.

Refer to "Control Variables" on page 139 for details of the SQLI_ROWS variable.

 ASG-Manager Products Relational Technology Support: DB2

298

Querying SQL/DS SQLCODEs
You can display within your Manager Products environment SQL/DS HELP text
explaining SQLCODEs.

To display SQL/DS HELP text, enter either:

ISQL HELP sql/ds-sqlcode ;

or

ISQL ? sql/ds-sqlcode ;

where sql/ds-sqlcode is an SQL/DS SQLCODE number.

SQL/DS SQLCODEs and HELP text are always displayed in response to unsuccessful
SQL statements submitted to your SQL/DS environment with the ISQL command.

Refer to "Output" on page 133 for details of the output of the ISQL command.

ISQL Syntax

where:

sql-statement is any SQL statement that can be dynamically prepared for execution.
The SQL statement can be a maximum of 255 characters long including leading,
embedded and trailing blanks. SQL SELECT statements must conform to the
specifications of a full select statement.

user-member-name is the name of a USER-MEMBER in which an SQL statement is
filed.

DISCONNECT disconnects the user from the current DB2 subsystem specified in
MPDY42DFLT.

sql/ds-sqlcode is an SQL/DS SQLCODE number.

number is the number of rows in a result table to be printed in response to a SQL
SELECT statement.

ISQL
sql-statement

user-member name

number
DISCONNECT

HELP sql/ds-sqlcode

?

;
.

���

�

8 Commands

299

POPULATE
The POPULATE command populates the repository with the results of the preceding
PREVIEW IMPORT command.

Refer to "POPULATE Syntax" on page 300 for the syntax of the POPULATE command.

Populating the Repository
Use the POPULATE command to execute the ADD or REPLACE command and member
definition statements generated by a previous PREVIEW IMPORT command. The
statements are those displayed in the current buffer or filed in a USER-MEMBER.

To execute statements displayed in the current buffer, enter:

POPULATE FROM BUFFER ;

The output of the PREVIEW command must be displayed in the current buffer which can
be a Command Mode, Lookaside, Update, or Edit Buffer.

If you want to enter other commands between a PREVIEW and POPULATE command
you can prefix these other commands with BROWSE or LOOKASIDE and then use
QUIT or XQUIT, to return to the output of the PREVIEW command, before entering
POPULATE.

To execute ADD and REPLACE statements filed in a USER-MEMBER enter:

POPULATE FROM USER user-member-name ;

where user-member-name is the name of the USER-MEMBER in which the
command and member definition statements generated by a previous PREVIEW
IMPORT command have been filed.

You can also execute the command and member definition statements by editing the
USER-MEMBER and entering a RUN command or by entering the name of the
USER-MEMBER in the Command Area.

By prefixing POPULATE with a NOPRINT command you can stop any output being
printed.

Refer to the ASG-ControlManager User’s Guide for details of the commands mentioned
above.

 ASG-Manager Products Relational Technology Support: DB2

300

Specifying that Statements Will Form a Logical Unit of Work
You can specify that the command and member definition statements entered in the
repository by the POPULATE command are to be treated as one Logical Unit of Work
(LUW).

To specify that all the statements will form one LUW, enter:

POPULATE FROM BUFFER ROLLBACK ;

or

POPULATE FROM USER user-member-name ROLLBACK ;

By using the ROLLBACK keyword you can specify that all the statements will form a
LUW which will either update the repository or be rolled back in its entirety, leaving the
repository unchanged, if for any reason any of the statements are unsuccessful.

For example, you can avoid a situation where the definition of the parent object is entered
in the repository but the definitions of some of its children are not.

To change the message error level which causes ROLLBACK to occur, enter:

POPULATE FROM BUFFER ROLLBACK LEVEL error-level ;

or

POPULATE FROM USER user-member-name ROLLBACK LEVEL error-level ;

where error-level can be:

• E, to cause ROLLBACK when Error messages occur

• W, to cause ROLLBACK when Warning messages and Error messages occur.

If you do not use the LEVEL keyword, E is the default (so ROLLBACK is not normally
caused when Warning messages occur).

POPULATE Syntax

where wbta-options are:

where name is the name of a USER-MEMBER on the MP-AID.

POPULATE wbta-options
wbda-options

;
.

�� �

�

USER name
FROM BUFFER

ROLLBACK

W
ELEVEL

� �

8 Commands

301

wbda-options are:

where:

string and viewset-name can contain from 1 to 32 characters and must conform to
the Manager Products rules for valid member names.

Note:
If a supplementary USERVIEW member is required for an ENTITY being defined, string
is concatenated, either as a prefix or a suffix, with the name of the ENTITY, to produce
the name of the supplementary USERVIEW. If this resulting name contains more than 32
characters, it is reduced.

name-list is a list of names, separated by commas, of relations or records, depending,
respectively, on whether USERVIEWS or ENTITIES has been specified in the command

range-list is:

where m and n are numbers assigned in the Workbench Design Area to relations or
records, depending respectively, on whether USERVIEWS or ENTITIES has been
specified in the command. If present, n must be greater than m.

format is the name of a FORMAT member of the Modeling Repository. FORMAT
members are used by User Formatted Output functions.

Note:
wbta-options are provided by generic import functions.
wbda-options are provided by data modeling and design functions.

USERVIEWS

ENTITIES
PREFIX-USERVIEWS string
SUFFIX-USERVIEWS

� �

AS-MODEL viewset-name NAMES name-list
NUMBERS range-list

��

ALPHABETICALLY USING FORMAT format
��

TO n

����������������������������������

m ��

 ASG-Manager Products Relational Technology Support: DB2

302

PREVIEW IMPORT
PREVIEW IMPORT generates ADD or REPLACE command and member definition
statements from the information on the WorkBench Translation Area (WBTA)
documenting external objects.

Refer to "PREVIEW Syntax" on page 304 for the syntax of the PREVIEW command.

The PREVIEW IMPORT command uses the information on the WorkBench Translation
Area (WBTA) as it has been processed by previous RECONCILE, RADD, RIGN,
RREN, RREP, or RUPD commands to generate ADD or REPLACE command and
member definition statements.

To generate the command and member definition statements, enter:

PREVIEW IMPORT ;

The member definition statements are generated in the default layouts provided by
Manager Products for each member type. You can create layout rules that suit your
repository standards and invoke them in the USING keyword of the PREVIEW IMPORT
command.

The NOTE attribute contains the date and time that the member definition statement was
generated by the PREVIEW command. The ALIAS attribute contains the external
object’s name. The alias type will correspond to the language used in the external
environment from which information about the object was imported.

Information in the NOTE and ALIAS attributes of the existing member is incorporated in
those of the proposed member. The single ALIAS attribute generated could contain
different aliases of the same alias type. You must edit the member definition statement
generated by the PREVIEW command and change one of the aliases.

If the definition is to replace an existing member, then certain default common attributes
of the existing member are incorporated in the definition unless you have specified the
NO-COMMON-CLAUSES keyword in a previous RECONCILE command.

PREVIEW IMPORT processes members on the WBTA in the same order as they are
listed on the Reconciliation Report generated by the previous RECONCILE command. A
proposed member can appear more than once in a Reconciliation Report but the
PREVIEW IMPORT command only generates one command and member definition
statement for each member.

For example, you could import information about two tables which share a column of the
same name. The shared column would appear twice on the Reconciliation Report but
only one command and member definition statement would be generated to document it
in the repository.

8 Commands

303

A member whose definition is not generated, because:

• It has been ignored by a previous RECONCILE command

• It has already been generated in the current PREVIEW IMPORT output

is indicated by comments. These comments help you to relate the PREVIEW output with
the previous Reconciliation Report.

The generated statements can be:

• Printed

• Filed in a USER-MEMBER on the MP-AID

• Both printed and filed.

To file the generated statements in a USER-MEMBER you must specify an ONTO
keyword in the PREVIEW IMPORT command.

By filing the command and member definition statements in a USER-MEMBER you can:

• Hold them across Manager Products sessions

• Edit the generated statements in the Edit Buffer.

You can subsequently enter the statements in the repository using the POPULATE
command.

Generating Member Definition Statements in Your Own Layouts
You can tailor the PREVIEW IMPORT command so that it generates member definition
statements in layouts which suit your repository standards.

To generate member definition statements in your own layouts enter:

PREVIEW IMPORT USING layout-executive ;

where layout-executive is an executive routine which invokes other executive
routines which each determine the layout of member definition statements generated for a
particular member type.

Alternatively you can tailor the executive routines in Manager Products default layout
rules.

Refer to "Tailoring Import" on page 157 for further details of tailoring the PREVIEW
IMPORT command.

 ASG-Manager Products Relational Technology Support: DB2

304

Filing Generated Output in a USER-MEMBER
To automatically file generated output in private or public USER-MEMBERs on the
MP-AID, enter:

PREVIEW IMPORT ONTO member-type member-name options ;

where:

member-type is the type of USER-MEMBER which will hold the generated output:
USER-MEMBER, PUBLIC-USER-MEMBER, or PRIVATE-USER-MEMBER, to file
output in a public or private USER-MEMBER (USER-MEMBER is private).

When appending or replacing the contents of an existing member, the user who created
that member can change it from private to public, or the reverse, by specifying either
PRIVATE or PUBLIC. Users with different Logon Identifiers can create private
USER-MEMBERs with the same names.

member-name is the name of the USER-MEMBER.

options define how the output is to be filed. These keywords are as follows:

• NEW (the default), APPEND, or REPLACE, to create a new member, append to an
existing member, or replace an existing member. If you specify NEW, and the
member already exists, the output will not be generated. If you specify APPEND or
REPLACE, and the member does not already exist, a new member is created.

• PRINT (the default), to print the full output, or NOPRINT, to print messages and
impact analysis reports only.

PREVIEW Syntax

where wbta-options are:

where:

layout-executive is the name of an executive routine

destination is:

PREVIEW IMPORT
wbta-options

;
.

wbda-clause

���

�

USING layout-executive ONTO destination
� �

PUBLIC-USER-MEMBER
PRIVATE-USER-MEMBER
USER-MEMBER

 name
NEW
APPEND
REPLACE

��

PRINT
NOPRINT

� �

8 Commands

305

where name is the name of a USER-MEMBER on the MP-AID.

wbda-clause is:

where:

string and viewset-name can contain from 1 to 32 alphanumeric characters and
must conform to the Manager Products rules for valid member names.

Note:
If a supplementary USERVIEW member is required for an ENTITY being defined, string
is concatenated, either as a prefix or a suffix, with the name of the ENTITY, to produce
the name of the supplementary USERVIEW. If this resulting name contains more than 32
characters, it is truncated.

name-list is a list of names, separated by commas, of relations or records, depending,
respectively, on whether USERVIEWS or ENTITIES has been specified in the command

range-list is:

where m and n are numbers assigned in the WorkBench Design Area to relations or
records, depending, respectively, on whether USERVIEWS or ENTITIES has been
specified in the command. If present, n must be greater than m.

format is the name of a FORMAT member of the Modeling Repository. FORMAT
members are used by User Formatted Output functions.

Note:
The PREVIEW IMPORT command is provided by generic import functions.
The wbda-clause is provided by data modeling and design functions.

USERVIEWS

ENTITIES
PREFIX-USERVIEWS string
SUFFIX-USERVIEWS

��

AS-MODEL viewset-name NAMES name-list
NUMBERS range-list

� �

ALPHABETICALLY USING FORMAT format
� �

TO n

����������������������������������

m ��

 ASG-Manager Products Relational Technology Support: DB2

306

RADD
RADD specifies you want a proposed member documenting an external object to be
added to the repository.

To use the RADD Line Command, enter:

RADD

in the Line Command Area alongside the proposed member’s identification number in
the Reconciliation Report.

To use the RADD Primary Command, enter:

RADD n ;

in the Command Area.

where n is the proposed member’s identification number in the Reconciliation Report.

The Reconciliation Report is displayed by the RECONCILE command. To display the
changes you have made with the RADD command enter a further RECONCILE
command.

The effects of the two forms of the RADD command are the same but you can only enter
Line Commands when working in an interactive environment. You can enter several
RADD Line Commands at the same time.

If a member with the same name as a proposed member already exists in the repository
and you specify RADD, it will be taken to mean replace.

You can also specify that you want a proposed member to be added to the repository by
including an ADDING keyword in the RECONCILE command.

Refer to the RECONCILE command for full details of adding proposed members.

RADD Syntax (Line Command)

RADD Syntax (Primary Command)

where n is a proposed member’s identification number in a Reconciliation Report.

RADD� ��

�

RADD n ;
.

�� ��

8 Commands

307

RECONCILE
RECONCILE generates proposed members from the information about external objects
held on the WorkBench Translation Area and reconcile the proposed members with the
current contents of the repository.

Refer to "RECONCILE Syntax" on page 318 for the syntax of the RECONCILE
command.

The RECONCILE command uses translation rules to generate proposed members from
the information about external objects placed on the Workbench Translation Area
(WBTA) by the EXTRACT command.

You can override the translation rules by specifying an ADDING, IGNORING, NO-
COMMON-CLAUSES, RENAMING, or REPLACING keyword in a RECONCILE
command.

You can also tailor the Manager Products default translation rules or create your own
translation rules and invoke them in the USING keyword of a RECONCILE command.

A member name and member type are generated for the proposed members. A
form-description and (depending on the data type of the column it is documenting) a
USAGE attribute are generated for proposed members which have an ITEM member
type.

The RECONCILE command does not update the repository but specifics the updates you
intend to make. These updates are determined by the current contents of the repository. A
proposed member will be added to the repository unless a member (other than a dummy
member without a source record) of the same name already exists.

Existing ITEM members will be replaced by proposed members whose definitions
contain additional form descriptions. The form descriptions of the existing member are
included in the definition of the proposed member.

In all other cases, if a proposed member has the same name as an existing member, it will
not be updated.

The RECONCILE command can be entered any number of times. Any Manager Products
instruction other than LOGOFF or RELEASE GLOBAL can be entered between
RECONCILE commands. If you specify an EXTRACT command between RECONCILE
commands then the information on the WBTA is replaced and subsequent RECONCILE
commands will apply to the latest and not the previously imported information.

 ASG-Manager Products Relational Technology Support: DB2

308

The first RECONCILE command generates the proposed members. Subsequent
RECONCILE commands can both change the proposed members and, subject to member
type checks, specify whether or not they are to be entered in the repository. You can also
regenerate the proposed members by entering a RECONCILE command including an
INITIALIZE keyword. The proposed members are regenerated according to the
translation rules and any changes you have made to the proposed members previously
generated are abandoned. A Reconciliation Report is displayed by each RECONCILE
command. The report compares the proposed members with existing repository members
which have the same name.

You can use the Reconciliation Report to reconcile the proposed and existing repository
members with one another. You can also use the RADD, RIGN, RREN, RREP, and
RUPD commands during reconciliation. In an interactive environment, these can be Line
commands or Primary commands.

The Reconciliation Report displays the condition of the existing members at the time the
proposed members were generated or regenerated. Reconciliation Reports displayed in
response to subsequent RECONCILE commands not including an INITIALIZE keyword
will display any changes you have made to the proposed members but will not display
any changes in the condition of the existing members.

The systems administrator can define member type checks that specify the types of
existing members to which all the proposed members documenting a parent object and its
children can refer. A check can fail, partially fail, or pass.

If the check fails, the proposed member and all other members in the parent-children set
cannot be added to the repository. This condition is indicated by an error message in the
Reconciliation Report and you cannot override it with an RADD, RECONCILE
ADDING, RREP, or RECONCILE REPLACING command.

If the check partially fails, the proposed member can be added to the repository but a
warning message in the Reconciliation Report indicates the partial failure.

If the check passes, then the proposed members can be added to the repository as normal.

For example, your systems administrator could specify that columns in tables should
preferably be documented in ITEM members but can be documented in GROUPs. This
check will fail if an existing SYSTEM member has the same name as a proposed member
documenting a column but will only partially fail if the existing member is a GROUP.

Member type checking enables you to take early action to ensure that proposed members
will not fail to encode, due to a reference to an existing member with an invalid member
type, when the repository is populated.

8 Commands

309

When a member type check failure occurs, you can rename the offending proposed
member to a name that does not exist in the repository or to an existing member name that
does not cause a further check failure. A RECONCILE RENAMING command rechecks
all the proposed members in the parent-children set.

The updates to be made to the repository are determined by the contents of the current or
next visible status. The Reconciliation Report displays the condition of the existing
members in the current or next visible status. If you change statuses, the report will
continue to display the members as they are visible from the previous status unless you
regenerate the proposed members by specifying an INITIALIZE keyword.

Refer to "Tailoring Import" on page 157 for details of how to define member type
checking.

Regenerating Proposed Members
To regenerate the proposed members documenting external objects, enter:

RECONCILE INITIALIZE ;

The proposed members are regenerated according to the default translation rules. Any
changes you have made to the previously generated members (for example, renaming
them) are abandoned. The Reconciliation Report will display the current condition of any
repository member whose name is the same as a proposed member.

Tailoring How Proposed Members are Generated
To tailor the RECONCILE command so that it generates proposed members which suit
your repository standards, enter:

RECONCILE INITIALIZE USING translation-rule-name-list ;

where translation-rule-name-list is a list of one or more executive routines
each separated by a comma. The executive routines must be listed in the order they are to
be executed.

For example, if Manager Products’ default naming rules for proposed members do not
suit your repository standards you can create executive routines specifying alternative
rules. Alternatively you can tailor the executive routines in the Manager Products default
translation rules.

Refer to "Tailoring Import" on page 157 for further details of tailoring the RECONCILE
command.

 ASG-Manager Products Relational Technology Support: DB2

310

Stopping Proposed Members being Entered In the Repository
To ignore a selection of proposed members so that they are not subsequently entered into
the repository, enter:

RECONCILE IGNORING selection ;

where selection specifies which of the proposed members are to be ignored. Refer to
"Selecting Members to be Ignored, Added, or Replaced" on page 312 for details of
selection.

The Reconciliation Report will indicate that a proposed member is to be ignored.

You can also use the RIGN command to ignore proposed members.

You cannot ignore proposed members documenting referenced objects.

Adding Proposed Members
To specify that you want a selection of proposed members to be added to the repository
(and not ignored), enter:

RECONCILE ADDING selection ;

where selection specifies which of the proposed members you want to be added to
the repository. Refer to"Selecting Members to be Ignored, Added, or Replaced" on
page 312 for details of selection.

Existing members with the same name as proposed members will be replaced as a result
of a RECONCILE ADDING command.

You can also specify that a proposed member will replace an existing member by
entering a RECONCILE REPLACING or RREP command.

You can rename proposed members by entering a RECONCILE RENAMING or RREN
command.

If member type checking has been enabled by your systems administrator and you want
to replace an existing member with a proposed member, then the member type of the
existing member is checked against a set of allowed proposed member types. If the check
fails, the command will not be executed.

The Reconciliation Report will indicate that the proposed members will be added to the
repository as a new member or replace an existing member.

You can also use the RADD command to specify which proposed members are to be
added to the repository.

8 Commands

311

You cannot specify that proposed members documenting referenced objects are to be
added to the repository. Referenced objects are added to the repository as dummy
members by a reference from the member documenting the parent object, if these
members are not already present on the repository.

Replacing Existing Members with Proposed Members
To specify that you want a selection of proposed members to replace existing repository
members, enter:

RECONCILE REPLACING selection ;

where selection specifies which proposed members are to replace existing members.
Refer to "Selecting Members to be Ignored, Added, or Replaced" on page 312 for further
details of selection.

The Reconciliation Report will indicate which of the proposed members are to replace
existing repository members.

You can also use the RREP command to specify which proposed members are to replace
existing members.

If member type checking is enabled by your systems administrator, then the member type
of the existing member being replaced is checked against a set of allowed proposed
member types. If the check fails, the command is not executed.

You cannot specify that proposed members documenting referenced objects are to
replace existing repository members. A relationship is created in the repository between
the proposed member documenting the parent object and the existing member.

Renaming Proposed Members
To rename a selection of proposed members, enter either:

RECONCILE RENAMING MEMBER member-name-1 AS member-name-2 ;

or

RECONCILE RENAMING NUMBER n AS member-name-2 ;

where:

member-name-1 is the current name of the proposed member

member-name-2 is the new name

n is the proposed member’s identification number in the Reconciliation Report.

 ASG-Manager Products Relational Technology Support: DB2

312

You can rename several proposed members with one RECONCILE command by
repeating the MEMBER and NUMBER keywords. The Reconciliation Report will
display the new member names of the proposed members.

If a proposed member appears more than once in the same Reconciliation Report then a
RECONCILE command including a MEMBER keyword will rename all occurrences of
the proposed members in the report.

If member-name-2 is the same as the name of another proposed member in the
Reconciliation Report, then the command will be rejected. If it is the same as the name of
an existing member, then the existing member is displayed in the Reconciliation Detailed
Report.

If you rename children then the proposed member documenting the parent object will
refer to the children by their new names.

You may want to rename a proposed member if:

• It has the same name as an existing member

• Its name does not suit your naming standards

• It has failed or partially failed member type checking.

You can create your own naming rules and invoke them in the USING keyword of a
RECONCILE command or tailor the executive routines in the Manager Products supplied
naming rules. You can also use the RREN command to rename proposed members.

Selecting Members to be Ignored, Added, or Replaced
You can select which proposed members you want to be ignored, added to the repository
or replace existing repository members.

To select proposed members by their member type, enter:

RECONCILE update TYPE member-type-list ;

where:

update is IGNORING, REPLACING, ADDING, or AMEND (reserved for future
use).2.5

member-type-list is a list of member types each separated by a comma.

To select proposed members by their member name, enter:

RECONCILE update MEMBER member-name-list ;

where member-name-list is a list of member names each separated by a comma.

8 Commands

313

To select proposed members by their identification number in the Reconciliation Report,
enter:

RECONCILE update NUMBER id-number-list ;

where id-number-list is a list of identification numbers each separated by a
comma.

To select all proposed members, enter:

RECONCILE update GROUP ALL ;

To select those proposed members which have the same name as an existing repository
member, enter:

RECONCILE update GROUP DUPLICATES ;

The different updates and selections can be combined in a single RECONCILE
command. For example, to specify that:

• Proposed members will replace existing repository members which have the same
member name

• Proposed members with a member type of MODULE and the proposed member
with the member name IT-DEPT-NAME will not be entered in the repository

enter:

RECONCILE REPLACING GROUP DUPLICATES IGNORING TYPE MODULE
MEMBER IT-DEPT-NAME ;

Excluding Common Clauses from the Definition of Proposed Members
To stop the default common attributes of existing repository members being incorporated
in proposed members which are replacing them, enter:

RECONCILE NO-COMMON-CLAUSES ;

You can specify with a RECONCILE REPLACING or RREP command that a proposed
member is to replace an existing repository member.

If you do not enter a RECONCILE command including the NO-COMMON-CLAUSES
keyword, then the ADMINISTRATIVE-DATA, ALIAS, COMMENT, DESCRIPTION,
and NOTE default common attributes of the existing repository member are incorporated
in the definition of the proposed member replacing it.

 ASG-Manager Products Relational Technology Support: DB2

314

Proposed members always have a NOTE and an ALIAS attribute. The attributes are
displayed in the member definition statements generated for the proposed members by a
subsequent PREVIEW command. The NOTE attribute gives the time and date the
statement was generated. The ALIAS attribute gives the name of the external object the
definition is documenting.

If the default common attributes of the existing member are updated after the proposed
members were last generated by the RECONCILE command, then the updates are not
reflected in the member definition statements generated by the PREVIEW command.

Specifying the Type of Reconciliation Report you want Displayed
You can specify the type of Reconciliation Report you want to be displayed by a
RECONCILE command.

To display a summarized Reconciliation Report, enter:

RECONCILE LIST SUMMARY ;

To display a detailed Reconciliation Report, enter:

RECONCILE LIST DETAILS ;

To display both a detailed and a summarized Reconciliation Report, enter:

RECONCILE LIST BOTH ;

The summarized report is displayed by default.

To display a detailed Reconciliation Report excluding certain information about the
relationships between objects, enter:

RECONCILE LIST DETAILS NO-XREF ;

If you specify the NO-XREF keyword then the following are not displayed in the detailed
Reconciliation Report:

• The table listing the children of the parent object

• The Also referred to by entry which indicates that children are shared by more than
one of the parent objects on which information has been imported.

8 Commands

315

A Description of the Reconciliation Summary Report
The Reconciliation Summary Report lists the proposed members documenting the
external objects about which information has been imported.

The ID column contains the unique identification number of the proposed members. The
identification number specifies the order in which information about each object was
imported. This order is determined by the object’s type. The numbering in the report is
not in sequence if there is more than one parent object because information on several
objects of the same type is imported. Parent objects have the lowest identification
numbers and are followed in the report by their children.

The Proposed Member Name column contains the name of the proposed members. The
Type column contains the member type of the proposed members.

The Upd column specifies how the repository is to be updated with the proposed
members. If ADD is specified, the proposed member is to be added to the repository. If
REP is specified the proposed member is to replace an existing member in the repository.
If IGN is specified the proposed member is not to be entered in the repository. A "*"
symbol indicates that the proposed member is a referenced object and is added to the
repository as a dummy member by a reference from the member documenting the parent
object (if the member does not already exist).

Initially:

• IGN is specified if there is an existing member with the same name as the proposed
member

• REP is specified if the proposed member is an ITEM member with a form
description not included in the existing member

• ADD is specified if there is no existing member.

The Condition column shows whether there is an existing repository member with the
same name as the proposed member and if it is a dummy, encoded, unverified, or
protected member. If the column is blank no member of the same name exists. *NO
AUTH is displayed if you do not have the authority to access the existing member. The
entries in the Condition column are otherwise the same as those displayed in the
Condition column of LIST command output.

If the systems administrator has enabled member type checking and a proposed member
fails the check, the error message DM05784E is displayed. If a proposed member
partially fails the check, the warning message DM05784W is displayed.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
the LIST command.

 ASG-Manager Products Relational Technology Support: DB2

316

An Example of the Reconciliations Summary Report
Figure 35 is an example of a Reconciliation Summary Report:

Figure 35 • Example Reconciliation Summary Report

A Description of the Reconciliation Detailed Report
The Reconciliation Detailed Report is divided into different sections for each external
object about which information has been imported. Each object has an unique
identification number which specifies the order in which information about it was
imported. This number is the same as the number in the summary report.

The entries following Extracted give the name and type of the external object. The entries
following Refers to give the name and type of a referenced object

The entries following Proposed give the member name and member type of the proposed
member documenting the external object and indicate whether the member is to be added
to the repository, replace an existing dictionary member or be ignored. Proposed
members documenting referenced objects are indicated by a "*" symbol.

If a proposed member is an ITEM then its form-description, (depending on the data type
of the column it defines) USAGE attribute, and version are also displayed.

The entries following Dictionary give information about the condition (encoded, dummy
or unverified) and member type of any repository member with the same name as the
proposed member. If the existing member is an ITEM then all versions of its
form-description and their associated USAGE attributes are displayed. *NO AUTH is
displayed if you do not have the authority to access the existing member.

The section reporting the parent object is followed by a list of the children (including
referenced objects) on which information has been imported.

If information has been imported from more than one parent object and they share the
same children this is indicated by an Also referred to by entry in the sections reporting the
shared children.

**
Reconciliation summary report for extract of table AAW.SALES from DB2.
**
ID Proposed Member Name Type Upd Condition
--
1 TB-AAW-SALES DB2-TABLE ADD
2 US-AAW DB2-USER IGN SCE ENC
3 TS-NORTH DB2-TBSPACE *
4 IT-QTY ITEM ADD * DUM
5 IT-DESCRIPTION ITEM IGN SCE ENC
6 IT-DELIVERY ITEM ADD
7 IT-PRICE ITEM REP SCE ENC

8 Commands

317

If the systems administrator has enabled member type checking and a proposed member
fails the check, the error message DM05784E is displayed. If a proposed member
partially fails the check the warning message DM05784W is displayed.

An Example of the Reconciliation Detailed Report
Figure 36 is an example of a Reconciliation Detailed Report:

Figure 36 • Example Reconciliation Detailed Report

**
Reconciliation detailed report for extract of table AAW.SALES from W2.
**

1 Extracted... SALES TABLE
Proposed.... TB-AAW-SALES DB2-TABLEADD

_ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _6 CHILDREN extracted with AAW.SALES_ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _

1 CREATOR
1 DBSPACE
4 COLUMNS

2 Extracted... AAW CREATOR
Proposed....US-AAW DB2-USER IGN
Dictionary..SCE ENC DB2-USER

_ _
3 Refers to... NORTH TABLESPACE

Proposed.... TS_NORTH DB2-TBSPACE *
_ _

4 Extracted... QTY COLUMN
Proposed.... IT-QTY ITEM ADD
Dictionary.. * DUM ITEM

 _
5 Extracted... DESCRIPTION COLUMN

Proposed.... IT-DESCRIPTION ITEM IGN
 Form desc.. CHARACTERS 5 VERSION 1
Dictionary.. SCE ENC ITEM
 Version 1.. HELD-AS CHARACTERS 5
 Version 2.. ENTERED-AS CHARACTERS 4

_ _
6 Extracted... COST COLUMN

Proposed.... IT-DELIVERY ITEM ADD
 Form desc.. CHARACTERS 10 USAGE DATE VERSION 1

_ _
7 Extracted... PRICE COLUMN

Proposed.... IT-PRICE ITEM REP
 Form desc.. NUMERIC 6 VERSION 3
Dictionary.. SCE ENC ITEM
 Version 1.. HELD-AS CHARACTERS 5
 Version 2.. ENTERED-AS CHARACTERS 4

**

 ASG-Manager Products Relational Technology Support: DB2

318

RECONCILE Syntax

where:

initialize clause is:

where translation-rule-name is the name of an executive routine.

selection clause is:

where:

member-type is the member type of a proposed member

member-name is the name of a proposed member

n is a proposed member’s identification number in a Reconciliation Report.

 RECONCILE
initialize-clause

���

���������NO-COMMON-CLAUSES
IGNORING selection

��

���������

REPLACING selection ADDING selection
���������

� �

RENAMING AS member-name-2NUMBER n
MEMBER member-name

��

� �

;
.LIST SUMMARY

DETAILS
BOTH

NO-XREF
NOXREF

� �

INITIALIZE

USING translation-rule-name
������������������������

��

TYPE member-type

GROUP ���������������
ALL

DUPLICATES

� �

�������

MEMBER member-name NUMBER n
�������������

��

8 Commands

319

RIGN
RIGN specifies that you do not want a proposed member documenting an external object
to be entered in the repository.

To use the RIGN Line Command, enter:

RIGN

in the Line Command Area alongside the proposed member’s identification number in
the Reconciliation Report.

To use the RIGN Primary Command, enter:

RIGN n ;

in the Command Area.

where n is an integer identifying the proposed member’s identification number in the
Reconciliation Report.

The effects of the two forms of the RIGN command are the same but you can only enter
Line Commands when working in an interactive environment. You can enter several
RIGN Line Commands at the same time.

The Reconciliation Report is displayed by the RECONCILE command. To display the
changes you have made with the RIGN command enter a further RECONCILE
command.

You can also specify that you want a proposed member to be ignored by including an
IGNORING keyword in the RECONCILE command.

Refer to the RECONCILE command for full details of ignoring proposed members.

RIGN Syntax (Line Command)

RIGN Syntax (Primary Command)

where n is a proposed member’s identification number in a Reconciliation Report.

RIGN� �

�

�

RIGN n ;
.

�

� ��

 ASG-Manager Products Relational Technology Support: DB2

320

RREN
RREN renames a proposed member during reconciliation.

To use the RREN Line Command, enter:

RREN

in the Line Command Area alongside the proposed member’s identification number in
the Reconciliation Report.

To use the RREN Primary Command, enter:

RREN n ;

in the Command Area.

where n is an integer identifying the proposed member’s identification number in the
Reconciliation Report.

The effects of the two forms of the RREN command are the same but you can only enter
Line Commands when working in an interactive environment. You can enter several
RREN Line Commands at the same time.

A Dialog Buffer in which you specify the new name of the proposed member is displayed
in response to each RREN command.

The Reconciliation Report is displayed by the RECONCILE command. To display the
changes you have made with the RREN command enter a further RECONCILE
command. You can also rename a proposed member by including a RENAMING
keyword in a RECONCILE command.

Note:
This command cannot be performed on a referred object.

Refer to "RECONCILE" on page 307 for full details of renaming proposed members.

RREN Syntax (Line Command)

RREN Syntax (Primary Command)

where n is a proposed member’s identification number in a Reconciliation Report.

RREN� �

�

�

RREN n ;
.

�

� ��

8 Commands

321

RREP
RREP specifies that you want a proposed member documenting an external object to
replace an existing repository member.

To use the RREP Line Command, enter:

RREP

in the Line Command Area alongside the proposed member’s identification number in
the Reconciliation Report.

To use the RREP Primary Command, enter:

RREP n ;

in the Command Area.

where n is an integer identifying the proposed member’s identification number in the
Reconciliation Report.

The effects of the two forms of the RREP command are the same but you can only enter
Line Commands when working in an interactive environment. You can enter several
RREP Line Commands at the same time.

The Reconciliation Report is displayed by the RECONCILE command. To display the
changes you have made with the RREP command enter a further RECONCILE
command.

You can also specify that you want a proposed member to replace an existing repository
member by including a REPLACING keyword in the RECONCILE command.

Refer to "RECONCILE" on page 307 for full details of replacing existing members with
proposed members.

RREP Syntax (Line Command)

RREP Syntax (Primary Command)

where n is a proposed member’s identification number in a Reconciliation Report.

RREP� �

�

�

RREP n ;
.

�

� ��

 ASG-Manager Products Relational Technology Support: DB2

322

RUPD
RUPD updates an existing repository member from a Reconciliation Report in order to
interactively change its source record.

To use the RUPD Line Command, enter:

RUPD

in the Line Command Area alongside the identification number in the Reconciliation
Report of the proposed member with the same name as the existing member.

To use the RUPD Primary Command, enter:

RUPD n ;

in the Command Area.

where n is the identification number in the Reconciliation Report of a proposed member
with the same name as an existing member.

The Reconciliation Report is displayed by the RECONCILE command. To display the
changes you have made with the RUPD command enter a further RECONCILE
command including the INITIALIZE keyword.

The effects of the two forms of the RUPD command are the same. The RUPD command
opens a buffer in Update Mode containing a copy of the source record of the selected
repository member which you can then update interactively. You can only enter RUPD
commands when working in an interactive environment.

If the selected member is an ITEM, you can copy the form-description and USAGE
attribute of the proposed member into the Update Buffer. To do this, use the I, F, and P
Line Commands in a Command Interface environment, or the A and B Line Commands
in a Panel Interface environment.

To enter the contents of the buffer into the repository use the FILE or SFILE commands.
To abandon the update without adding the contents to the repository use the QUIT or
XQUIT commands.

8 Commands

323

You can enter several RUPD Line Commands at the same time. The different Update
Buffers are stacked. Use the QUERY ACTIVE-BUFFERS command to find out which
buffers you have opened. The number of Update Buffers you can stack is determined by
the buffer limit set in the repository by the systems administrator. Use the QUERY
BUFFER-LIMIT command to find out the buffer limit.

Note:
The Line Commands only copy the form-description and USAGE attribute of the
proposed member corresponding to the existing member at the top of the buffer stack.

Having filed or quit the Update Buffer you will go to an Update Buffer lower in the buffer
stack or return to the Reconciliation Report.

The current status must be an update status. If the member does not exist in the current
status then the RUPD command copies the source record of the member from the next
visible status in which it does exist. If you subsequently FILE or SFILE the member it is
entered in the current status.

Refer to the ASG-ControlManager User’s Guide for details of the FILE, SFILE, QUIT,
XQUIT, I, F, P, and QUERY commands.

Refer to the ASG-MethodManager Workstation User’s Guide for details of the X, A, and
B line commands.

RUPD Syntax (Line Command)

RUPD Syntax (Primary Command)

where n is a proposed member’s identification number in a Reconciliation Report.

RUPD� �

�

�

RUPD n ;
.

�

� ��

 ASG-Manager Products Relational Technology Support: DB2

324

Output Generation Options
You can use output generation options to send generated output to:

• A USER-MEMBER on the MP-AID (public or private)

• A sequential dataset

• A partitioned dataset.

• PRINT.

This applies to all output produced by export to DB2 commands, except messages or
reports from the following commands: DB2 DROP, DB2 RECALCULATE, DB2 SIZE,
DB2 PRODUCE.

For example, you can store a generated SQL statement on the MP-AID, then submit it
directly to your DB2 environment, using Dynamic SQL functions, or transfer it to an
external dataset using the TRANSFER command.

Refer to Chapter 6, "Dynamic Import/Export," on page 131 for details of Dynamic SQL
functions.

Refer to the ASG-DictionaryManager User’s Guide for details of the TRANSFER
command.

Sending Generated Output to a USER-MEMBER
To automatically send generated output to private or public USER-MEMBERs on the
MP-AID, enter:

command ONTO member-type member-name options ;

where:

command is either a DB2 export command, or the PREVIEW command.

member-type is the type of USER-MEMBER which will hold the generated output:
USER-MEMBER (private), PUBLIC-USER-MEMBER, or
PRIVATE-USER-MEMBER, to file output in a public or private USER-MEMBER.

When appending or replacing the contents of an existing member the user who created
that member can change it from private to public, or the reverse, by specifying either
PRIVATE or PUBLIC. Users with different Logon Identifiers can create private
USER-MEMBERs with the same names.

member-name is the name of the USER-MEMBER.

8 Commands

325

options define how the output is to be filed. These keywords are:

• NEW (the default), APPEND, or REPLACE, to create a new member, append to an
existing member, or replace an existing member. If you specify NEW, and the
member already exists, the output will not be generated. If you specify APPEND or
REPLACE, and the member does not already exist, a new member is created.

• PRINT (the default), to print the full output, or NOPRINT, to print messages and
impact analysis reports only.

Sending Generated Output to a Sequential Dataset
You may wish to send your generated output directly to an external file. To send output to
a sequential dataset, enter:

command ONTO SEQUENTIAL ddname sequential-options ;

where:

command is a DB2 export command.

ddname is the data definition name associated with the sequential dataset. The data
definition name must be defined in the job control. If the dataset already exists, and no
specification is given with the job control statements or the command, the existing dataset
is replaced with the new dataset but has the characteristics of the old dataset.

sequential-options consist of the FORMAT FIXED/FORMAT VARIABLE,
RECORD-SIZE, and BLOCK-SIZE keywords, and specify the characteristics of the
sequential dataset. These must be defined either in the command or in the job control
statements defining the sequential dataset. Characteristics defined in the command take
precedence over those defined in job control statements.

For fixed length output, short records are right padded as necessary with blanks.

Note:
The form of the command described here is not available in DOS or CICS environments.

For a full definition and explanation of the characteristics of a sequential dataset, refer to
the SENDF command in the ASG-Manager Products Procedures Language guide.

 ASG-Manager Products Relational Technology Support: DB2

326

Sending Generated Output to a Partitioned Dataset
You may wish to send your generated output directly to a member of a partitioned
dataset. This partitioned dataset must already exist.

To send data to a new member of a partitioned dataset, enter:

command ONTO PARTITIONED ddname MEMBER name ;

or

command ONTO PARTITIONED ddname MEMBER name NEW ;

where:

command is a DB2 export command.

ddname is the data definition name associated with the partitioned dataset. The data
definition name must be defined in the job control.

name is the member of the partitioned dataset to which you wish to send the output.

To replace existing data in a partitioned dataset, enter:

command ONTO PARTITIONED ddname MEMBER name REPLACE ;

Sending Generated Output to PRINT
To send the output generated to PRINT, enter:

command ONTO PRINT ;

where command is a DB2 export command.

Examples of Output Generation Options
To generate an SQL DROP TABLE statement from the DB2-TABLE member
TB-DJB-CUST, enter:

DB2 DROP TB-DJB-CUST ONTO PRIVATE DROPCUST REPLACE ;

The SQL statement is filed onto an existing private USER-MEMBER named
DROPCUST, replacing the current contents of that member.

To send a generated SQL ALTER INDEX statement for the DB2-INDEX member
IXFFS-ACCS to the fixed format dataset defined by FILE2 (in the job control), enter:

DB2 CREATE IX-FFS-ACCS ONTO SEQUENTIAL FILE2 FORMAT
FIXED RECORD-SIZE 80 BLOCK-SIZE 8000 ;

8 Commands

327

To generate an SQL CREATE TABLE statement for the DB2-TABLE member
TB-AAW-EMPS, appending the generated SQL statements to member MEM15 of the
partitioned dataset defined by FILE3 (in the job control), enter:

DB2 CREATE TB-AAW-EMPS ONTO PARTITIONED FILE3 MEMBER
MEM15 APPEND ;

Name Editing Options
Use name editing options to edit generated data names before they are output.

You can use name editing options to generate SQL statements to make several copies of
an object, or several versions of host structures.

Name editing options for generated SQL statements apply to the object being created, and
for all its columns, but not to other referenced objects. For example, in a CREATE
TABLE statement, name editing options apply to the table being created, and its columns,
but not to tables named in referential constraints or to the tablespace named in the IN
attribute.

Name editing for host structures are applied to all generated host variable names.

Names can be expanded up to a maximum of 96 characters during editing. If a generated
name is too long for a specific language, it is shortened via the Name Reduction Process.

We recommend caution when editing a generated data name, if you will later import
information from a generated object back into your repository. If you have edited the
name, it is difficult to reconcile the imported data with the existing member. You should
therefore have a rigorous set of naming standards.

You can edit generated data names in three ways:

• Replacing all or part of the name with a specified character string

• Dropping all or part of the name

• Inserting a specified character string at a specified position within the name.

Refer to "Dropping or Replacing a Name" on page 328 and "Inserting a Character String
Within a Name" on page 328 for further details of these options.

Refer to "Naming Guidelines" on page 152 for details of naming standards.

Refer to Appendix A, "Name Reduction Process," on page 467 for details of the Name
Reduction Process.

 ASG-Manager Products Relational Technology Support: DB2

328

Dropping or Replacing a Name
To replace some or all of the name with a specified string, enter either:

command REPLACING selection WITH string ;

To remove some or all of the name, enter:

command DROPPING selection ;

where:

command is any DB2 export command

selection is a selected part of the name. It can be either:

• ALL, for the whole of the name (in which case, you must then specify a string to be
inserted in its place, using the INSERTING keyword)

• A specified number of characters (p), starting at a start position m (defaulting to 1).
m plus p must be no more than 97. Names are only edited if the start position plus
the number of characters is no more than the length of the name

• String, a delimited string of up to 32 printable characters (including space
characters), matching a string in the name

string (as defined above) is to be inserted into the name.

Inserting a Character String Within a Name
To insert a specified string either before or after a specified position in the generated data
name, enter either:

command INSERTING string BEFORE position ;

or

command INSERTING string AFTER position ;

where:

command is any DB2 export command.

string is a delimited string, of up to 32 printable characters (including space
characters), to be inserted.

8 Commands

329

position is one of these:

• ALL, for the start or end of a name

• n, a number giving a character position in the name

• A delimited string of up to 32 printable characters, for a position before or after a
matching string in the name.

Examples of Name Editing Options
To generate an SQL CREATE TABLE statement for the DB2-TABLE member
TB-EMP-JOBS, replacing the 4-character string starting at position 8 with the string
BAK, enter:

DB2 CREATE TB-EMP-JOBS REPLACING 8 (4) WITH 'BAK' ;

This creates a SQL CREATE TABLE statement referring to a DB2 table called
TB-BAK-JOBS. All ITEM/GROUP members documenting columns in that table have
their names changed similarly, if they have names that are 12 (8 + 4) or more characters
long.

To generate a COBOL data structure from the DB2-TABLE member TB-DJB-EMPS,
inserting the string -USER1 at the end of generated variable names, enter:

DB2 PRODUCE COBOL FROM TB-DJB-USERS INSERTING '-USER1'
AFTER ALL ;

To generate an SQL ALTER INDEX statement, replacing the string DEV with the string
PROD, and dropping the string -TEMP, for the DB2-INDEX member
IX-DJB-DEV-TEMP, enter:

DB2 ALTER IX-DJB-DEV-TEMP REPLACE 'DEV' WITH 'PROD'
DROPPING '-TEMP' ;

 ASG-Manager Products Relational Technology Support: DB2

330

331

9 9Repository Member Types

This chapter includes these sections:

Member Type Descriptions . 331
DB2-ALIAS . 332
DB2-COLLECTION. 336
DB2-DATABASE. 338
DB2-DMS . 341
DB2-INDEX . 346
DB2-LOCATION . 367
DB2-PACKAGE . 369
DB2-PLAN . 375
DB2-PRIVILEGE . 381
DB2-PROCEDURE . 393
DB2-RENAME . 396
DB2-STOGROUP. 396
DB2-TABLE . 399
DB2-TBSPACE . 425
DB2-TRIGGER. 436
DB2-USER . 437
DB2-VIEW . 441

Reusing Existing Member Definitions. 464

Member Type Descriptions
This section describes the member types in which you document the objects, locations,
and the security system of a DB2 database. The member types are documented in
alphabetical order of member type name.

 ASG-Manager Products Relational Technology Support: DB2

332

You can define repository members as follows:

• In interactive environments, using:

— Diagrams drawn on a programmable workstation

— Assisted update panels

— Update buffers.

• In batch environments, using commands such as ADD.

Throughout this chapter the word enter is used to cover all methods of defining members.

When you define a member it is checked to ensure that it follows the syntax. This
checking happens, for example, when you file an update buffer or when you use the
ENCODE command. Throughout this chapter the phrase "on encoding" is used to cover
all methods of encoding members.

Refer to the ASG-ManagerView User’s Guide for details of using diagrams to define
members.

Refer to the ASG-MethodManager Workstation User’s Guide for details of using assisted
update panels to define members.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
using batch and interactive commands to define members, and for details of what
happens when a member definition is encoded.

Refer to the ASG-ControlManager User’s Guide for details of entering member
definition statements in different environments.

DB2-ALIAS
DB2-ALIAS defines DB2 aliases in the repository.

Refer to "DB2-ALIAS Syntax" on page 336 for the syntax of DB2-ALIAS member
definition.

In the DB2 environment, you can create a local DB2 alias for a table or view at a remote
location in a distributed network, if you have access privileges to the remote table or
view. Local users who do not know the location of the table or view can then access it.
DB2 aliases are represented on the repository as DB2-ALIAS members.

To define a DB2 alias, enter:

DB2-ALIAS

The member definition must begin with this member type identifier.

9 Repository Member Types

333

All other clauses available to define DB2-ALIAS members are optional. However, for the
successful generation of SQL statements, you must define specific clauses, as follows:

• For CREATE ALIAS statements define the CREATOR-OWNER clause

• For DROP ALIAS statements define the CREATOR-OWNER clause

• For COMMENT ON statements define the DB2-COMMENT clause

• For LABEL ON statements define the DB2-LABEL clause.

Note:
The DB2-ALIAS member type is not the same as the common clause ALIAS, which
enables you to define alternative names for a repository member.

Refer to Chapter 4, "Repository Definition," on page 91 for details of the generation of
DB2 alias names.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-ALIAS member definitions using an AS clause.

Defining an Owner
To define the owner of an alias, enter:

CREATOR-OWNER user ;

where user is the name of a DB2-USER or SQL-USER member, and represents the
authorization ID of the owner of the alias.

On encoding, the member specified in the CREATOR-OWNER clause is checked to
ensure that it is a DB2-USER or SQL-USER member.

The CREATOR-OWNER clause must be present for the successful generation of SQL
statements, but it can be overridden by an SQLID clause defined in a DB2 command.

Specifying a Table or View
To specify the table or view to which the DB2 alias applies, enter:

FOR object

where object is a member of one of the following types:

• DB2-TABLE

• DB2-VIEW

• SQL-TABLE

• SQL-VIEW.

 ASG-Manager Products Relational Technology Support: DB2

334

On encoding, the member specified in the FOR clause is checked to ensure that it is one
of the above.

For the successful generation of SQL CREATE ALIAS and DROP ALIAS statements the
member named in the FOR clause:

• Must be encoded

• Must have a CREATOR-OWNER clause defined, naming a DB2-USER member

• If your DB2 profile is set to three-part name generation, the DB2-USER member
must have a LOCATION clause defined.

Defining a Comment on a DB2 Alias
To define a comment for an alias, enter:

DB2-COMMENT 'comment'

where comment is a string of no more than 254 characters, each line of which is within
delimiters.

When generated, lines of comment are concatenated to form a single string. To preserve
spaces between words, insert a space between the last character of each continuing line
and its delimiter.

For example, the DB2-ALIAS named MANAGER-NUMBER has an owner of
PERSONNEL, and the following comment defined:

DB2-COMMENT 'This table contains the Manager number of every '
'manager in each department'

The following SQL statement can be generated:

COMMENT ON TABLE PERSONNEL_MANAGER_NUMBER IS 'This table cont
ains the Manager number of every manager in each department'

In this example the word "contains" has been split due to the margins set in the DB2
profile.

This clause must be present for the successful generation of SQL COMMENT ON
statements.

9 Repository Member Types

335

Defining a Label on a DB2 Alias
To define a label for an alias, enter:

DB2-LABEL 'label'

where label is a string of no more than 30 characters within delimiters.

This clause must be present for the successful generation of SQL LABEL ON statements.

Example
The DB2-ALIAS member TAXPEC-ALIAS is defined in the repository using an ADD
command. An SQL statement is generated from the member definition using a DB2
CREATE command.

ADD TAXREC-ALIAS;

DB2-ALIAS
CREATOR-OWNER FFS1
FOR TAX-RECORD-T

 DB2-COMMENT
'SOUTHERN BRANCH TAX RECORDS'

DB2-LABEL
'SOUTH TAX RECORD TABLE'

;

Repository definition

1

2

3

4

CREATE ALIAS FFS1.TAXREC_ALIAS
FOR SOUTH.SLJ1.TAX_RECORD_T

 COMMENT ON ALIAS FFS1.TAXREC_ALIAS
IS 'SOUTHERN BRANCH TAX RECORDS';

LABEL ON ALIAS FFS1.TAXREC_ALIAS

;

SQL Statement

1

2

3

4

;

IS 'SOUTH TAX RECORD TABLE';

;

 ASG-Manager Products Relational Technology Support: DB2

336

1 The two-part qualified DB2 alias name is taken from the DB2-ALIAS member name
and the DB2-USER member, FFS1, named in its CREATOR-OWNER clause.
Location-qualifiers are not generated for DB2-alias names.

2 The table name is taken from the DB2-TABLE member TAX-RECORD_T. The
DB2 profile is set to three-part name generation, therefore location and owner names
are derived and used as qualifiers.

3 The comment and label on the DB2 alias are taken directly from the DB2- ALIAS
definition.

4 Same as number 3.

DB2-ALIAS Syntax

where:

alias is the name of a DB2-ALIAS member.

user is the name of a DB2 -USER or SQL-USER member.

table is the name of a DB2-TABLE or SQL-TABLE member.

view is the name of a DB2-VIEW or SQL-VIEW member.

comment is a string of no more than 254 characters, within delimiters.

label is a string of no more than 30 characters, within delimiters.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

DB2-COLLECTION
DB2-COLLECTION defines DB2 collections in the repository.

Refer to "DB2-COLLECTION Syntax" on page 337 for the syntax of the
DB2-COLLECTION member definition.

 DB2-ALIAS
AS alias CREATOR-OWNER user

���

FOR DB2-COMMENT 'comment'table
view

� �

;
.DB2-LABEL 'label' common clauses

�

� �

9 Repository Member Types

337

To define a DB2 collection, enter:

DB2-COLLECTION

The member definition must begin with this member type identifier. All other clauses
available to define DB2-COLLECTION members are optional.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-COLLECTION member definitions using an AS clause.

Defining a Location
To define a location for the DB2-COLLECTION enter:

LOCATION location-name

where location-name is the name of a DB2-LOCATION member.

Defining a Collection Identity
To define a collection identity, enter:

COLLECTION-ID collection-id

where collection-id is an identifier of 1 to 18 characters. It is used in the generation of
BIND and REBIND utility statements.

DB2-COLLECTION Syntax

where:

collection-name is the name of a DB2-COLLECTION member.

location-name is the name of a DB2-LOCATION member.

collection-id is an identifier of length 1 to 18 characters which must be in delimiters.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

 DB2-COLLECTION
AS collection-name

� ��

LOCATION location-name COLLECTION-ID collection-id

� �

 common clauses
� �

;
.

� �

�

 ASG-Manager Products Relational Technology Support: DB2

338

DB2-DATABASE
DB2-DATABASE defines DB2 databases in the repository.

Refer to "DB2-DATABASE Syntax" on page 341 for the syntax of the
DB2-DATABASE member definition.

To define a DB2 database, enter:

DB2-DATABASE

The member definition must begin with this member type identifier. All other clauses
available to define DB2-DATABASE members are optional.

You can generate SQL CREATE DATABASE and DROP DATABASE statements from
DB2-DATABASE members.

Refer to Chapter 4, "Repository Definition," on page 91 for details of the generation of
DB2 database names.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-DATABASE member definitions using an AS clause.

Defining a Location
To define the location to which a database belongs, enter:

LOCATION 1ocation-name

where location-name is the name of a DB2-LOCATION member that represents a
local or remote location in a distributed network.

In DB2-DATABASE member definitions, the LOCATION clause is available to
document your DB2 environment but is not used to generate location-qualified names.

Defining a Storage Group
To define the storage group to which the database belongs, enter:

STOGROUP stogroup-name

where stogroup-name is the name of a DB2-STOGROUP member.

On encoding, the member specified in the STOGROUP clause is checked to ensure that it
is a DB2-STOGROUP member.

9 Repository Member Types

339

The storage group defined in the DB2-DATABASE definition is the default used by
generated table spaces and indexes:

• That belong to the database

• That do not have a storage group specified in their own member definition.

If there is no storage group defined in the DB2-DATABASE member, none is generated
and the DB2 default, SYSDEFLT, applies. However you are recommended to explicitly
define the storage group, even if it is SYSDEFLT, so that the repository accurately
reflects your DB2 environment.

Defining an Associated Buffer Pool
To define the buffer pool that a database uses, enter:

BUFFERPOOL bufferpool-name

where bufferpool-name is one of the following buffer pools: BP0, BP1, BP2, BP3,
BP4, BP5, BP6, BP7, BP8, BP9, BP10, BP11, BP12, BP13, BP14, BP15, BP16, BP17,
BP18, BP19, BP20, BP21, BP22, BP23, BP24, BP25, BP26, BP27, BP28, BP29, BP30,
BP31, BP32, BP33, BP34, BP35, BP36, BP37, BP38, BP39, BP40, BP41, BP42, BP43,
BP44, BP45, BP46, BP47, BP48, BP49, BP32K, BP32K1, BP32K2, BP32K3, BP32K4,
BP32K5, BP32K6, BP32K7, BP32K8, BP32K9, BP8K0, BP8K1, BP8K2, BP8K3,
BP8K4, BP8K5, BP8K6, BP8K7, BP8K8, BP8K9, BP16K0, BP16K1, BP16K2,
BP16K3, BP16K4, BP16K5, BP16K6, BP16K7, BP16K8, BP16K9.2.5

The buffer pool defined in the DB2-DATABASE definition is the default used by those
table spaces and indexes that belong to the database, and do not have a buffer pool
specified in their own member definition.

If you do not define a buffer pool in a DB2-DATABASE, none is generated and the DB2
default applies.

Defining the Encoding Scheme
To specify that the data is to be encoded using the ASCII CCSID specified during
installation, enter:

CCSID ASCII

To specify that the data is to be encoded using EBCDIC CCSID specified during
installation, enter:

CCSID EBCDIC

 ASG-Manager Products Relational Technology Support: DB2

340

Specifying ROSHARE
By specifying ROSHARE you can indicate to DB2 how the database will be shared using
read-only data. Valid arguments for the ROSHARE keyword are OWNER and READ.

To specify that the database will be shared with only the current server allowed to update
it, enter:

ROSHARE OWNER

To indicate that the current server is to have read-only access to the database through
shared read-only data, enter:

ROSHARE READ

Specifying AS-WORKFILE
To specify that this database is a workfile, enter:

AS-WORKFILE

To specify the name of the subsystem for which this database is a workfile, enter:

AS-WORKFILE FOR membername

where membername is a string naming the member.

Example
The DB2-DATABASE member DAA101C is defined in the repository using an ADD
command. An SQL statement is generated from the member definition using a DB2
CREATE command.

1 The database name DAA1OIC is taken from the member name.

2 The storage group name SD100B is taken from the member definition.

3 The buffer pool name is taken directly from the member definition.

4 The ROSHARE value is taken directly from the member definition.

ADD DAA101C;
DB2-DATABASE
LOCATION MIDLAND
STOGROUP SD100B
BUFFERPOOL BPO
ROSHARE READ
;

DB2 CREATE DATABASE DAA101C
STOGROUP SD100B
BUFFERPOOL BPO
ROSHARE READ

;

1

2
3
4

Repository Definition SQL Statement

9 Repository Member Types

341

DB2-DATABASE Syntax

 2.5

2.5

where:

database is the name of a DB2-DATABASE member

location-name is the name of a DB2-LOCATION member

stogroup-name is the name of a DB2-STOGROUP member

membername is string

bpname is one of: BP0, BP1, BP2, BP3, BP4, BP5, BP6, BP7, BP8, BP9, BP10, BP11,
BP12, BP13, BP14, BP15, BP16, BP17, BP18, BP19, BP2O, BP21, BP22, BP23, BP24,
BP25, BP26, BP27, BP28, BP29, BP30, BP31, BP32, BP33, BP34, BP35, BP36, BP37,
BP38, BP39, BP40, BP41, BP42, BP43, BP44, BP45, BP46, BP47, BP48, BP49, BP32K,
BP32K1, BP32K2, BP32K3, BP32K4, BP32K5, BP32K6, BP32K7, BP32K8, BP32K9,
BP8K0, BP8K1, BP8K2, BP8K3, BP8K4, BP8K5, BP8K6, BP8K7, BP8K8, BP8K9,
BP16K0, BP16K1, BP16K2, BP16K3, BP16K4, BP16K5, BP16K6, BP16K7, BP16K8,
BP16K9.2.5

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

DB2-DMS
DB2-DMS allows users to document data manipulation statements. Each DB2-DMS
member contains one data manipulation statement which may be a delete statement, an
insert statement, a select statement or an update statement. To define a DB2-DMS
member, enter:

DB2-DMS

 DB2-DATABASE
AS database

���

LOCATION location-name STOGROUP stogroup-name

� �

 BUFFERPOOL bpname
��

 CCSID ASCII
 EBCDIC

 INDEX-BUFFERPOOL bpname
��

 ROSHARE OWNER
 READ
 NONE

 AS-WORKFILE
 FOR membername

��

;
.common clauses

�

� �

 ASG-Manager Products Relational Technology Support: DB2

342

The member definition must begin with this member type identifier. All other clauses
available to define DB2-DMS members are optional. The syntax of the DB2-DMS
member definition follows.

DB2-DMS Syntax

where delete statement is:

where from-clause is:

where:

table-name is the name of a DB2-TABLE member.

correl-name is an identifier, of no more than 18 characters.

string is the string of text to be deleted.

insert statement is:

where:

from-clause is as defined above

contains-clause is:

where single-column clause is:

 DB2-DMS
common clauses

;
.delete statement

insert statement
select statement
update statement

� �

�

�

 from-clause WHERE string
DELETE ��

CORRELATION-NAME correl-name
FROM table-name

��

� �

CONTAINS contains-clause

INSERT
����������������

from-clause

� �

single-column-clause

group-name EXPAND

column-attrs
(integer)

� �

item-name

group-name

version KNOWN-AS local-name
� �

9 Repository Member Types

343

where:

item-name is the name of an ITEM member

version is an integer in the range 1 to 15

local-name is the name of the column

group-name is the name of a GROUP member.

column-attrs is:

where:

string is a string of 1 to 255 characters, delimited

(integer) is a number between 1 and 300 to indicate the number of occurrences of the
following single-column clause

group-name is as defined above.

select statement is:

2510

where contains-clause is:

where:

single-column-clause is as defined above.

column-attrs is:

VALUES string
��

SELECT

CONTAINS contains-clauseALL
DISTINCT

����������������

� �

order-by-clause
update-clause

from-clause
� �

WHERE string HAVING string
� �

single-column-clause

group-name EXPAND

column-attrs
(integer)

� �

EXPRESSION string GROUP-BY
� �

TABLE correl-name
� �

 ASG-Manager Products Relational Technology Support: DB2

344

where:

string is a string of 1 to 255 characters, delimited.

correl-name is as defined above.

(integer) is a number from 1 to 300.

group-name is as defined above.

order-by-clause is:

order-spec is:

where:

single-column clause is as defined above.

(integer) is a number from 1 to 300.

group-name is as defined above.

integer is a number from 1 to 18.

update-clause is:

where update-specification is:

where:

item-name is as defined above.

group-name is as defined above.

ORDER-BY
ASCENDING

order-spec

DESCENDING

������������������������������������

��

single-column-clause

group-name EXPAND
(integer)

integer

� �

FOR-UPDATE update-specification
�������������������

� �

item-name
group-name KNOWN-AS local-name

� �

 group-name EXPAND
��

9 Repository Member Types

345

local-name is as defined above.

from-clause is as defined above.

string is a string of 1 to 255 characters, delimited.

update statement is:

where contains-clause is:

where:

single-column-clause is as defined above.

column-attrs is:

where:

string is a string of 1 to 255 characters, delimited.

(integer) is a number from 1 to 300.

group-name is as defined above.

order-by-clause is as defined above.

update-clause is as defined above.

from-clause is as defined above.

string is a string of 1 to 255 characters, delimited.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

UPDATE
���������������������

CONTAINS contains-clause

� �

order-by-clause
update-clause

from-clause
� �

WHERE string HAVING string
� �

single-column-clause

group-name EXPAND

column-attrs
(integer)

� �

SET string
��

 ASG-Manager Products Relational Technology Support: DB2

346

DB2-INDEX
DB2-INDEX defines DB2 indexes in the repository.

Refer to "DB2-INDEX Syntax" on page 363 for the syntax of DB2-INDEX member
definition.

To define a DB2 INDEX, enter:

DB2-INDEX

The member definition must begin with this member type identifier. All other clauses
available to define DB2-INDEX members are optional. However for the successful
generation of SQL statements you must define the following:

• For ALTER INDEX statements define the CREATOR-OWNER clause

• For CREATE INDEX statements define the CREATOR-OWNER and

• ON clauses, and if the PARTITION clause is defined, the CLUSTER keyword

• For DROP INDEX statements define the CREATOR-OWNER clause

Each column is usually represented by an ITEM member, but can be represented by a
GROUP member. GROUP members are useful because they can contain several ITEMs.

To specify the ITEM and GROUP members that represent the indexed columns, use the
CONTAINS clause. You can define columns:

• Individually, so that one ITEM or GROUP member defines one column

• In sets, so that the same ITEM or GROUP member defines several columns, with
identical attributes.

• In cascades from a GROUP member, so that every ITEM nested in a GROUP
member defines one column.

DB2-INDEX repository definitions can be generated automatically if you use the
Workbench Design Area (WBDA) facilities for DB2 database design.

Refer to Chapter 3, "DB2 Database Design," on page 27 for details of generating
DB2-INDEX definitions from the WBDA.

Refer to Chapter 4, "Repository Definition," on page 91 for details of the derivation of
DB2 index names.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-INDEX or SQL-INDEX member definitions using an AS clause.

9 Repository Member Types

347

Defining an Owner
To define the owner of an index, enter:

CREATOR-OWNER user

where user is the name of a DB2-USER or SQL-USER member, and represents the
authorization ID of the owner of the index.

On encoding, the member specified in the CREATOR-OWNER clause is checked to
ensure that it is a DB2-USER or SQL-USER member.

This clause must be present for the successful generation of SQL statements, but it can be
overridden by an SQLID clause defined in a DB2 command.

Note:
The DB2-USER or SQL-USER member named in the CREATOR-OWNER clause is
used to generate user-qualified names for indexes.

Defining a Clustered Index
To define a clustered index, enter:

CLUSTER

Partitioned indexes must also be clustered.

If you do not include the CLUSTER keyword in a DB2-INDEX that contains a
PARTITION clause, it is automatically generated in SQL CREATE INDEX statements.
A warning message is also generated, to remind you to include the CLUSTER keyword
in the member definition.

Specifying Index Type
To specify the type of index, enter:

TYPE n

where n is 1 or 2.

Note:
An error message is issued during SQL generation if the type specified in the member is
type 1 and the index is defined as UNIQUE WHERE-NOT-NULL.

 ASG-Manager Products Relational Technology Support: DB2

348

Defining a Unique Index
To define that indexed columns in the table being indexed do not have duplicate entries,
enter:

UNIQUE

In DB2, when a single column in a table is being indexed, then each value can appear
once only in the indexed column. When more than one column in a table is being
indexed, then any given set of values can appear once only in the indexed columns.

In a column of the key that can contain null values, to specify that two or more null values
are regarded as unequal, enter:

WHERE-NOT-NULL

WHERE-NOT-NULL can only be specified on a type-2 index.

Defining the Table to be Indexed
To define the table to which the index refers, enter:

ON table

where table is the name of a DB2-TABLE or SQL-TABLE member.

On encoding, the member specified in the ON clause is checked to ensure that it is a
DB2-TABLE or SQL-TABLE member.

The ON clause must be present for the successful generation of SQL CREATE INDEX
statements.

Specifying the Form Description that Defines the Data Type of the Columns to be Indexed
When you index a table, every column name generated by the DB2-INDEX member
must have a corresponding column name generated by the DB2-TABLE member that is
being indexed.

To specify which form description, defined in an ITEM or GROUP member, is used to
generate the data type of the columns to be indexed in the table, enter one of the
following form keywords:

ENTERED-AS
HELD-AS
REPORTED-AS
DEFAULTED-AS

The form keyword that you define applies to all the ITEMs and GROUPs named in the
CONTAINS clause that follows.

9 Repository Member Types

349

For example, a DB2-INDEX member containing the following lines:

ENTERED-AS
CONTAINS ITEM1, ITEM2

refers to these two ITEM members:

The ENTERED-AS form keyword in the DB2-INDEX definition specifies that the
ENTERED-AS form description from both ITEMs is used to define the data type of
columns. Therefore the column generated from ITEM 1 has a data type of CHAR and the
column generated from ITEM has a data type of DECIMAL.

If you do not specify a form keyword then the DEFAULTED-AS form description is
used. Where the ITEM or GROUP has no DEFAULTED-AS form description defined,
then the Manager Products defaults apply. For further details refer to ASG-Manager
Products Source Language Generation.

Refer to Appendix C, "Defining and Generating DB2 Member Types," on page 475 for
further details of documenting the columns of tables and generating data types.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
form keywords and form description in ITEM and GROUP member definitions.

Specifying the ITEMs or GROUPs that Define Columns
To specify the ITEM or GROUP members that define columns, enter:

CONTAINS member-list

where member-list is the name of one or more ITEM or GROUP members, separated
by commas, each representing a single column.

On encoding, the members specified in the CONTAINS clause are checked to ensure that
they are either ITEMs or GROUPs. Duplicate column names are not permitted by DB2,
therefore column names are checked on generation to ensure that no duplicates are
present.

Each ITEM can define up to 15 form descriptions. To define which of the form
descriptions you want to use, enter:

CONTAINS item version

ITEM 1 ITEM2

ITEM
HELD-AS BINARY 10
ENTERED-AS CHAR 5
REPORTED-AS FLOAT 9

ITEM
ENTERED-AS DECIMAL 4.2
DEFAULTED-AS FLOAT 7

 ASG-Manager Products Relational Technology Support: DB2

350

where:

item is the name of an ITEM member.

version is an integer in the range 1 to 15, and defines the form description version that
you want to use.

For example:

HELD-AS CONTAINS STOCK-LIST 3

defines that the third HELD-AS form description in the ITEM member STOCK- LIST is
used a the column data type.

When you use the SIZE and RECALCULATE commands, the data type of columns is
used to calculate the size of an index.

To define a set of columns with identical attributes, using the same ITEM or GROUP
member, enter:

CONTAINS (integer) member

where:

integer is the number of columns to be derived from the member, within brackets

member is the name of an ITEM or GROUP member.

To resolve duplicated names on generation of an SQL statement, column names are
automatically suffixed by an underscore and a number, the first by 1, the second by 2, and
so on.

For example:

CONTAINS (4) STOCK-LIST

generates the four columns STOCK_LIST 1, STOCK_LIST 2, STOCK_LIST_3, and
STOCK_LIST_4. The attributes, such as data type, are the same for each of the four
columns.

When a column is derived from a GROUP containing several ITEMs, the data type of the
column is taken as CHAR. The maximum number of characters allowed in the column is
calculated from the combined field lengths of the form descriptions defined in each
ITEM. However, where a DB2 command applied to the DB2-TABLE specifies the
EXPAND keyword, then each ITEM within a GROUP generates a separate column.

9 Repository Member Types

351

Naming Columns
You can explicitly name a column if you do not want its name to be generated from the
ITEM or GROUP name or alias.

To define the name of an indexed column in a table, enter:

KNOWN-AS local-name

where local-name is a string of no more than 18 characters.

For example:

CONTAINS IT-INCOMING KNOWN-AS STOCK_IN

defines that the ITEM member IT-INCOMING generates an indexed column called
STOCK_IN.

If you use the KNOWN-AS clause to name a set of columns, the local name is duplicated
for each column. To resolve duplicated names on generation of an SQL statement,
column names are automatically suffixed by an underscore and a number, the first by _1,
the second by _2, and so on.

For example:

CONTAINS (3) IT-Q1 KNOWN-AS MONTH

generates three columns from the ITEM member IT-Q1, named MONTH_1, MONTH_2,
and MONTH_3.

Refer to Chapter 4, "Repository Definition," on page 91 for further details of the
generation of column names.

Specifying that Each ITEM Contained in a GROUP Defines One Column
If you want each of the ITEMs contained in a GROUP to represent a column, enter:

CONTAINS group EXPAND

where group is the name of a GROUP member.

For example entering: CONTAINS AREA-DEPOT EXPAND generates four columns
when the GROUP, AREA-DEPOT, contains four ITEMs.

 ASG-Manager Products Relational Technology Support: DB2

352

However, if the NO-EXPAND keyword is specified in a DB2 command the EXPAND
keyword in the member definition is overridden and the GROUP generates a single
column.

Note:
You cannot define a KNOWN-AS clause with expanded GROUPs. If you represent a
column with a GROUP member, but name the column using a KNOWN-AS clause,
duplicated column names are generated if you use DB2 commands that include the
EXPAND keyword.

If the GROUP is nested, that is it contains other GROUPs, each of these is also expanded
so that all ITEMs are used to define columns. Nesting can continue to any depth and is
only limited by the amount of memory available.

Where a set of columns is derived from an expanded GROUP, each contained ITEM or
GROUP is repeated the number of times specified. If a GROUP contains an ITEM with
its own repeating factor, the ITEM is also repeated the number of times specified.

For example, a DB2-INDEX defined as:

CONTAINS (2) AREA-DEPOT EXPAND

where the GROUP, AREA-DEPOT, contains:

(2) WAREHSE-A
WAREHSE-B

(3) LOCALSTK-A

generates four columns from WAREHSE-A, two columns from WAREHSE-B, and six
columns from LOCALSTK-A, and names them as follows:

WAREHSE_A_1
WAREHSE_A_2
WAREHSE_B_1
LOCALSTK_A_1
LOCALSTK_A_2
LOCALSTK_A_3

WAREHSE_A_3
WAREHSE_A_4
WAREHSE_B_2
LOCALSTK_A_4
LOCALSTK_A_5
LOCALSTK_A_6

9 Repository Member Types

353

Expanded GROUPs
The member GROUP 1 contains nested GROUPs, shown in this diagram:

When you generate SQL statements intermediate levels in the data structure, that is
GROUP2 and GROUP3, are removed in order to generate the following flat, two-level
structure:

02 ITEM1
02 ITEM3
02 ITEM5
02 ITEM6
02 GROUP4
02 ITEM4
02 ITEM2

Note:
When you apply SIZE or RECALCULATE, GROUP4, is treated as an elementary field
as it has no lower level. Its data type defaults to CHAR (1). Intermediate levels, in the
above example GROUP2 and GROUP3, can be shown as comments.

Defining Sort Order
To define that the entries in an index are sorted in ascending key order, enter:

ASCENDING

To define that the entries in an index are sorted in descending key order, enter:

DESCENDING

If you do not specify a sort sequence, the DB2 default applies.

Defining Storage Space
To define the physical space occupied by an index or partition you can either:

• Define the VSAM catalog it is to use

• Define the storage group it belongs to

GROUP1

GROUP2

ITEM1

ITEM2

ITEM3
GROUP3

ITEM4

ITEM5
ITEM6
GROUP4

 ASG-Manager Products Relational Technology Support: DB2

354

To define the VSAM catalog the index or partition is to use, enter:

VCAT catalog

where catalog is the name of a VSAM catalog, of no more than 8 characters.

To define the storage group to which the index or partition belongs, enter:

STOGROUP stogroup-name

where stogroup-name is the name of a DB2-STOGROUP member.

On encoding, the member specified in the STOGROUP clause is checked to ensure that it
is a DB2-STOGROUP member.

The storage group defined in the DB2-DATABASE definition is the default used by
indexes

• That belong to the database

• That do not have a storage group specified in their own member definition

When you define the STOGROUP clause, you can additionally define further details of
primary and secondary storage using the PRIQTY, SECQTY sub-clauses. Both
sub-clauses are expressed in Kilobytes.

To specify the amount of primary storage space, enter:

PRIQTY p

where p is the number of kilobytes, and must be in the range 3 to 4194304 inclusive.

To specify the amount of secondary storage space, enter:

SECQTY s

where s is the number of kilobytes, and must be in the range 0 to 131068 inclusive.

Primary and secondary storage space is allocated in the storage area defined either:

• In the VOLUMES clause of the DB2-STOGROUP member named in the
STOGROUP clause of the DB2-INDEX member

• In the storage group defined in the STOGROUP clause of the DB2- DATABASE

You can also specify whether or not to erase DB2-defined datasets when the index or
partition is deleted in a DROP command.

9 Repository Member Types

355

If you want the datasets to be erased, enter:

ERASE YES

If you do not want the datasets to be erased, enter:

ERASE NO

If you do not specify PRIQTY, SECQTY, or ERASE sub-clauses, the DB2 defaults
apply.

Defining Free Space
You can accommodate future expansion of an index or partition by defining:

• The frequency with which pages are left free

• The percentage of each page that is left free

To define the relative frequency with which free pages are allocated, enter:

FREEPAGE fn

where fn is an integer in the range 0 to 255.

For example, FREEPAGE 4 means that 1 free page is left after every 4 pages.

To define the percentage space kept free on a page, when an index or partition is loaded
or reorganized, enter:

PCTFREE pn

where pn is an integer in the range 0 to 99

If you do not define FREEPAGE or PCTFREE clauses the DB2 defaults apply.

Defining Group Buffer Pool Usage
To define that all pages are to be cached in the group buffer pool, enter:

GBPCACHE ALL

To define that only updated pages are to be cached in the group buffer pool, enter:

GBPCACHE CHANGED

To define that no pages are to be put into the group buffer pool, enter:2.5

GBPCACHE NONE

 ASG-Manager Products Relational Technology Support: DB2

356

Defining the Ability to Recover with the COPY Utility 2.5
Specifying COPY YES allows recovery of the index and specifying COPY NO
suppresses the ability to recover.

Defining Index Partitions
To define that an index is to have a partition, enter:

PARTITION

You can optionally define a number, details of storage, free space allocation and key
values, for each partition.

To generate SQL CREATE INDEX statements successfully from DB2-INDEX members
containing a PARTITION clause, you must define a NUMBER and KEY clause for each
PARTITION.

To give the partition a number, enter:

NUMBER n

where n is an integer in the range 1 to 64. If you do not define the numbers of partitions,
they are automatically generated by the DB2 CREATE command, commencing with 1,
and increasing in increments of 1.

To define that the partitions of an index have a key value, enter:

KEY 'key-val'

where key-val is the highest value, within delimiters, that a column in the partition can
have.

If you are indexing more than one column, each key value must be enclosed in quotes and
separated by a comma. The first key value corresponds to the first index column, the
second value to the second index column and so on.

If the key value is numeric it must be enclosed in single quotes. If the key value is a
character string, or includes a character, it must be enclosed in single quotes within
double quotes. For example:

KEY 2525

KEY " 'x2525'"

To define the storage space to which the partition belongs, use the VCAT, or
STOGROUP, PRIQTY, SECQTY, and ERASE clauses described in "Defining Sort
Order" on page 353.

9 Repository Member Types

357

To define how much space is left free in the partition, use the FREEPAGE and PCTFREE
clauses described in "Defining Storage Space" on page 353.

If you do not define storage or free space for partItions individually, they automatically
take space from that specified for the index as a whole.

Defining the Locking Parameter
Each physical page of an index may be divided into 1, 2, 4, 8, or 16 subpages. Each
subpage is a unit of locking.

To define subpages and therefore the locking unit, enter:

SUBPAGES division

where division is one of these integers:

1
2
4
8
16

If you do not define a locking parameter, none is generated, and the DB2 default applies.

Defining an Associated Buffer Pool
To define the buffer pool that indexes use, enter:

BUFFERPOOL bufferpool-name

where bufferpool-name is one of the following buffer pools: BP0, BP1, BP2, BP3,
BP4, BP5, BP6, BP7, BP8, BP9, BPl0, BP11, BP12, BP13, BP14, BP15, BP16, BP17,
BP18, BP19, BP20, BP21, BP22, BP23, BP24, BP25, BP26, BP27, BP28, BP29, BP30,
BP31, BP32, BP33, BP34, BP35, BP36, BP37, BP38, BP39, BP40, BP41, BP42, BP43,
BP44, BP45, BP46, BP47, BP48, BP49.2.5

If you do not define a buffer pool in a DB2-INDEX, the default defined in the
DB2-DATABASE to which the index belongs, applies.

Specifying Maximum Piecesize for Non-partitioned Indexes
To specify the piecesize, enter:

PIECESIZE ps psunits

where:

ps is an integer that must be a power of two, the range of which is dependent on the units
defined as psunits.

 ASG-Manager Products Relational Technology Support: DB2

358

psunits can be either K, M, or G and indicates the units for the value specified in ps:

• K indicates that the ps value is to be multiplied by 1024 to specify the maximum
piecesize in bytes. ps must be an integer value to the power of two between 256 and
4,194,304.

• M indicates that the ps value is to be multiplied by 1,048,576 to specify the
maximum piecesize in bytes. ps must be an integer value to the power of two
between 1 and 4096.

• G indicates that the ps value is to be multiplied by 1,073,741,824 to specify the
maximum piecesize in bytes. ps must be an integer value to the power of two
between 1 and 4.

These are the valid values for piecesize:

256K
512K
1024K (or 1 MB)
2024K (or 2 MB)
4096K (or 4 MB)
8192K (or 8 MB)
16384K (or 16 MB)
32768K (or 32 MB)
65536K (or 64 MB)
131072K (or 128 MB)
262144K (or 256 MB)
524288K (or 521 MB)
1048576K (or 1024 MB) (or 1 GB)
2097152K (or 2048 MB) (or 2 GB)
4194304K (or 4096 MB) (or 4 GB)

The limit is 64GB for DB2 Version 6.0 or later.2.5

Defining the Datasets are Left Open or Closed After Use
To define that the dataset, on which an index resides, is to be closed when not in use,
enter:

CLOSE YES

To define that it is to remain open, enter:

CLOSE NO

If you do not define a CLOSE clause the DB2 default applies.

9 Repository Member Types

359

Defining a Dataset Password
To define a password for the VSAM dataset, on which an index resides, enter:

DSETPASS password

where password is a VSAM dataset password of no more than 8 characters.

Indicating Deferred Index Construction
To indicate whether the index is built during the execution of the CREATE INDEX
statement, enter:

DEFER NO

indicating that the index is built, or

DEFER YES

indicating that the index is not built. If the table is populated, the index is placed in a
recover-pending state to indicate that the index must be recovered by the RECOVER
INDEX utility.

Example of an Unpartitioned DB2-INDEX Definition and Generated SQL Statement

ADD CUSTOMER-CODE-INDEX;
DB2-ALIAS

'CUST-CODE-INDX'
SALES-ACCOUNT-DEPT-DB2-USR

ON 'CUSTOMER-INVOICE-TABLE'
CUSTOMER-CODE ASCENDING

;

Repository definition

1

3
4

5

ALIAS-SQL
CREATOR-OWNER

CONTAINS
CLUSTER
FREEPAGE
PCTFREE

2

4
25

CREATE INDEX SLDEP.CUST_CODE_INDX
ON PSGP00.CUST_INVOIC_TABLE

(CUSTOMER_CODE ASC)

SQL Statement

1
2

3
4

;

FREEPAGE
PCTFREE 25
CLUSTER

5

 ASG-Manager Products Relational Technology Support: DB2

360

1 The unqualified DB2 name for the index is taken from the SQL ALIAS defined in
the member definition statement.

2 The SQL ALIAS of the CREATOR-OWNER (member
SALES-ACCOUNT-DEPT-DB2-USR) is used to qualify the index name.

3 The member name of the table to be indexed is CUSTOMER-INVOICE-TABLE,
which is generated as CUST_INVOIC_TABLE by name reduction. It is qualified by
the table owner’s authorization ID, which is derived from the SQL ALIAS of the
DB2-USER member, which represents the authorization ID.

4 The CONTAINS clause is converted to a DB2 column-specification by using the
SQL ALIAS of member CUSTOMER-CODE and adding the DB2 abbreviation
ASC for ASCENDING.

5 The CLUSTER keyword and FREEPAGE and PCTFREE parameters are taken from
the member definition.

Example of a Partitioned DB2-INDEX Definition and Generated SQL Statement
In this example the indexed table is in a table space that contains three partitions. Refer to
the documentation of the DB2-TBSPACE member type for the example definition of this
table space.

The first partition is for all customers whose customer-numbers start with P1, as they are
more active than the average. The second partition is for customer 5 whose
customer-numbers start in the range P2 to P5. The last partition is for the rest, as these are
inactive customers and fewer insertions are expected.

9 Repository Member Types

361

ADD CUSTOMER-CODE-INDEX;
DB2-INDEX

'CUST-CODE-INDX'
SALES-ACCOUNT-DEPT-DB2-USR

ON 'CUSTOMER-INVOICE-TABLE'
CUSTOMER-CODE ASCENDING

Repository definition

1

3
4

5

ALIAS-SQL
CREATOR-OWNER

CONTAINS

FREEPAGE 5
PCTFREE 10

2

VCAT VSMCAT3

CLUSTER
PARTITION NUMBER 1
 KEY "'P1999999'"
 STOGROUP SG-SD100B
 PRIQTY 200
 SECQTY 20
 ERASE NO
 FREEPAGE 4
PARTITION NUMBER 2
 KEY "'P59999999

 STOGROUP SG-SD100B
 PCTFREE 20
SUBPAGE
BUFFERPOOL BP0
CLOSE NO

;

 VCAT VSMCAT3
PARTITION NUMBER 3
 KEY "'P9999999

 ASG-Manager Products Relational Technology Support: DB2

362

1 The unqualified DB2 name for the index is taken from the SQL ALIAS defined in
the member definition statement.

2 The SQL ALIAS of the CREATOR-OWNER (member SALES-ACCOUNT-
DEPT-DB2-USR) is used to qualify the index name.

3 The member name of the table to be indexed is CUSTOMER-INVOICE TABLE,
which is generated as CUST_INVOIC_TABLE by name reduction. It is qualified by
the table owner’s authorization ID, which is derived from the SQL ALIAS of the
DB2-USER member which represents the authorization ID.

4 The CONTAINS clause is converted to a DB2 column-specification by using the
SQL ALIAS of member CUSTOMER-CODE and adding the DB2 abbreviation
ASC for ASCENDING.

5 All these attributes are generated directly from the clauses in the member definition.

CREATE INDEX SLDEP.CUST_CODE_INDX
ON PSGP00.CUST_INVOIC_TABLE

(CUST_CODE ASC)

SQL Statement

1

3
4

5

FREEPAGE 5
PCTFREE 10

2

USING VCAT VSMCAT3

CLUSTER
PART 1 VALUES ('P1999999)
USING STOGROUP SG-SD100

 PRIQTY 200
 SECQTY 20
 ERASE NO
 FREEPAGE 4
,PART 2 VALUES ('P5999999')

 PCTFREE 20

;

USING VCAT VSMCAT3
,PART 3 VALUES ('P9999999')
USING STOGROUP SG-SD100

)
SUBPAGES 1
BUFFERPOOL BP0
CLOSE NO

9 Repository Member Types

363

DB2-INDEX Syntax

2.5

2.5

 2.5

where:

index is the name of a DB2-INDEX or SQL-INDEX member

user is the name of a DB2-USER member

table is the name of a DB2-TABLE or SQL_TABLE member.

 DB2-INDEX
AS index CREATOR-OWNER user

�� �

TYPE UNIQUE1
2 WHERE-NOT-NULL

��

ON table ENTERED-AS
HELD-AS
REPORTED-AS
DEFAULTED-AS

��

���������������������

CONTAINS contains-clause
using-block

��

free-block CLUSTER DEFER NO
YES

� �

��

PARTITION
storageNUMBER n

KEY 'key-val'
���������

��

SUBPAGES

1
2

BUFFERPOOL bpnameGBPCACHE
CHANGED
ALL

4
8
16

��

NONE

� �

PIECESIZE maxpsize COPY YES

NO

� �

CLOSE
 YES
 NO DSETPASS password

� �

common clauses

� �

 .
;

�

 ASG-Manager Products Relational Technology Support: DB2

364

contains-clause is:

where:

integer is the number of columns in a set.

single-column-clause is:

where:

item is the name of an ITEM member

version is an integer in the range 1 to 15

group is the name of a GROUP member

local-name is the name of the column, of no more than 18 characters.

group is as defined above.

using-block is:

where:

catalog is a VSAM catalog name, of no more than 8 characters

stogroup-name is the name of a DB2-STOGROUP member.

single-column-clause

group EXPAND
(integer)

��

� �

ASCENDING
DESCENDING

group
version

item� �

 KNOWN-AS local-name
��

STOGROUP stogroup-name
VCAT catalog

space-specification

� �

9 Repository Member Types

365

space specification is:

where:

p is an integer in the range 3 to 4194304

s is an integer in the range 0 to 131068.

free-block is:

where:

fn is an integer in the range 0 to 255

pn is an integer in the range 0 to 99.

n is an integer in the range 1 to 64

key-val is the highest value which the column may contain in the partition

storage is:

where:

using-block is as defined above

free-block is as defined above.

bpname is one of: BP0, BP1, BP2, BP3, BP4, BP5, BP6, BP7, BP8, BP9, BP10, BP11,
BP12, BP13, BP14, BP15, BP16, BP17, BP18, BP19, BP20, BP21, BP22, BP23, BP24,
BP25, BP26, BP27, BP28, BP29, BP30, BP31, BP32, BP33, BP34, BP35, BP36, BP37,
BP38, BP39, BP40, BP41, BP42, BP43, BP44, BP45, BP46, BP47, BP48, BP49, BP32K,
BP32K1, BP32K2, BP32K3, BP32K4, BP32K5, BP32K6, BP32K7, BP32K8, BP32K9,
BP8K0, BP8K1, BP8K2, BP8K3, BP8K4, BP8K5, BP8K6, BP8K7, BP8K8, BP8K9,
BP16K0, BP16K0, BP16K1 BP16K2, BP16K3, BP16K4, BP16K5, BP16K6, BP16K7,
BP16K8, BP16K9.2.5

� �

SECQTY s
 YES
 NO

ERASE NO

ERASE NO

 ERASE
PRIQTY P

SECQTY s

 YES

 YES

PCTFREE pn
PCTFREE pn

FREEPAGE fn� �

free-block
free-block

using-block� �

 ASG-Manager Products Relational Technology Support: DB2

366

maxpsize is:

ps is an integer value that must be a power of two.

If K is specified, ps must be between 256 and 4194304. The ps value will be
multiplied by 1024 to specify the maximum piecesize in bytes.

If M is specified, ps must be between 1 and 4096. The ps value will be multiplied by
1048576 to specify the maximum piecesize in bytes.

If G is specified, ps must be between 1 and 4. The ps value will be multiplied by
1073741824 to specify the maximum piecesize in bytes. The limit is 64GB for DB2
Version 6.0 or later.2.5

password is a VSAM dataset password, of no more than 8 characters.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

� �ps K
M
G

9 Repository Member Types

367

DB2-LOCATION
DB2-LOCATION documents a specific location in a distributed network, which
represents a DB2 subsystem.

DB2-LOCATION members are used to generate three-part qualified object names when
your DB2 profile is set for three-part name generation. Two-part names are generated by
default.

To define a DB2-LOCATION member, enter:

DB2-LOCATION

The member definition must begin with this member type identifier.

To document the VTAM name of a DB2 location, enter:

LUNAME 'luname'

where luname is a string of no more than eight characters and represents the VTAM
logical unit name of the DB2 location. The LUNAME clause is not used to generate SQL
statements, but is available to document your DB2 database.

Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-LOCATION member definitions using an AS clause.

Refer to Chapter 5, "Export to DB2," on page 105 for details of the DB2 profile.

To generate a location qualifier for table and view names you can:

• Use DB2 commands with the LOCATION keyword (for example DB2 CREATE)

• Use relationships between repository members.

Note:
A location explicitly named in a command overrides one derived from member
relationships.

You can generate a location qualifier from the following relationships between members:

• A DB2-LOCATION member must be named in the LOCATION clause of a
DB2-USER member

• The DB2-USER member must be named as the CREATOR-OWNER of the
DB2-TABLE or DB2-VIEW being generated.

For example, to generate the three-part table name SOUTH.SLJ1.TAX_RECORD_T,
these relationships must exist between members in the repository:

 ASG-Manager Products Relational Technology Support: DB2

368

Refer to Chapter 4, "Repository Definition," on page 91 for details of generating
location-qualified names. Refer to Appendix A, "Name Reduction Process," on page 467
for details of the name reduction process.

DB2-LOCATION Syntax

where:

location is the name of a DB2-LOCATION member.

luname is the VTAM name for a location in a network. It is a maximum of 8 characters
and must be in delimiters.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

SOUTH
DB2-LOCATION

SLJ1
DB2-USER
LOCATION SOUTH

TAX-RECORD-T
DB2-TABLE
CREATOR-OWNER SLJ1

SOUTH.SLJ1.TAX_RECORD_T

 DB2-LOCATION
AS location

� ��

LUNAME 'luname' common clauses
� �

� �

 .
;

�

9 Repository Member Types

369

DB2-PACKAGE
DB2-PACKAGE defines DB2 application packages in the repository.

Refer to "DB2-PACKAGE Syntax" on page 373 for the syntax of the DB2-PACKAGE
member definition.

To define a DB2 package, enter:

DB2-PACKAGE

The member definition must begin with this member type identifier. All other clauses
available to define DB2-PACKAGE members are optional.

A DB2-PACKAGE must be associated with either one SYSTEM, PROGRAM, or
MODULE member or with another PACKAGE member. This association is defined in
the MEMBER or COPY clauses. Note that on import, unless there is a record on the DB2
CATALOG that a PACKAGE has been produced by a BIND statement with the COPY
option, a MEMBER clause is generated by default.

A DB2-PACKAGE must specify the name of a DB2-COLLECTION member to which it
belongs. (The COLLECTION clause, like all other clauses, is optional at encode time, but
it is essential at generation time.)

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-PACKAGE member definitions using an AS clause.

Defining an Owner
To define the owner of a package, enter:

CREATOR-OWNER user

where user is the name of a DB2-USER or SQL-USER member, and represents the
authorization ID of the owner of the plan.

On encoding, the member specified in the CREATOR-OWNER clause is checked to
ensure that it is a DB2-USER or SQL-USER member.

The clause must be present for the successful generation of SQL statements, but it can be
overridden by an SQLID clause defined in a DB2 command.

 ASG-Manager Products Relational Technology Support: DB2

370

Defining Bind Parameters
The optional clauses in Table 23 allow you to define parameters within which the BIND
or REBIND subcommands produce the application package:

You can only define one option for each parameter. The clauses correspond to the
keywords in the BIND and REBIND subcommands, defined in the IBM documentation
and their meanings are the same. Additional parameters can be defined using he DB2
BIND or DB2 REBIND commands.

Note:
For the successful generation of BIND and REBIND subcommands you must define
RELEASE DEALLOCATE.

Specifying Dynamic or Static Rules
You can specify whether dynamic or static rules will apply to a dynamic SQL statement
at run time, using the DYNAMICRULES keyword. To specify that dynamic rules apply,
enter:

DYNAMICRULES RUN

To specify that static rules apply, enter:

DYNAMICRULES BIND

For further information on the effects of static rules, refer to the IBM documentation.

Table 23 Optional Clauses

Clause Alternatives

VALIDATE RUN BIND

ISOLATION RR RS CS UR NC

RELEASE COMMIT DEALLOCAT
E

EXPLAIN YES NO

SQLERROR NOPACKAGE CONTINUE

CURRENTDAT
A

YES NO

DEGREE 1 ANY

9 Repository Member Types

371

Specifying Whether to Keep Dynamic Rules
You can specify whether or not dynamic rules will be kept after the commit point using
the KEEPDYNAMIC keyword. To specify that dynamic rules will be kept, enter:

KEEPDYNAMIC YES

If you do not wish to keep the dynamic rules after commit points, enter:

KEEPDYNAMIC NO

Specifying Whether to Determine an Access Path
You can specify whether to determine an access path at runtime. To specify that access
paths will be determined using default values for input variables, enter:

VARS NOREOPT

To specify that access paths will be determined using the values of input host variables,
enter:

VARS REOPT

Specifying Whether to Defer Preparation for Dynamic Rules
You can specify whether to defer preparation for dynamic rules that refer to remote
objects, or to prepare them immediately. If you do not wish to defer preparation, enter:

PREPARE NODEFER

If you wish to defer preparation, enter:

PREPARE DEFER

Specifying the System Environment
You can enable or disable connections to specific environments using the ENABLE and
DISABLE keywords. The ENABLE and DISABLE keywords are mutually exclusive. To
enable a specific environment, enter:

ENABLE ENVIRONMENT environment

and to disable a specific environment, enter:

DISABLE ENVIRONMENT environment

where environment is the name of the environment to be enabled or disabled.

If a connection type is disabled, the plan is unable to access that environment type.

 ASG-Manager Products Relational Technology Support: DB2

372

You may enable all environments by entering:

ENABLE ALL

and DB2 accepts this as the default if neither ENABLE nor DISABLE is present in the
member definition. You cannot, however, disable all environments.

Whenever you specify an environment type to be enabled or disabled, you may specify an
environment name. The name is only allowed if the appropriate environment type has
been previously specified.

Specifying a Cache Size
You can specify the size (in bytes) of the authorization cache to be acquired in the
EDMPOOL for the plan. To specify a cache size enter:

CACHESIZE value

where value is a number in the range 0 to 4096. The default value is 1024. If you specify
a value that is not a multiple of 256, DB2 will round it up to the next highest multiple of
256.

Specifying a Version Identifier
You can specify a version-id for a package so that, when rebinding, an existing version is
not overwritten. To specify a version-id enter:

VERSION version-id

where version-id is a delimited string of 1 to 64 characters.

9 Repository Member Types

373

DB2-PACKAGE Syntax

where:

package is the name of a DB2-PACKAGE member

user is the name of a DB2-USER or SQL-USER member

version-id is a string of 1 to 64 characters, delimited

 DB2-PACKAGE
AS package CREATOR-OWNER user

�� �

VERSION version-id system
program
module
packageCOPY

MEMBER
��

COLLECTION collection VALIDATE RUN

BIND

� �

� �

ISOLATION
 RS
 RR DYNAMICRULES

BIND

RUN

CS
UR
NC

� �

SQLERROR NOPACKAGE

CONTINUE

� �

RELEASE COMMIT

DEALLOCATE

EXPLAIN NO
YES

� �

KEEPDYNAMIC NO

YES

VARS REOPT

NOREOPT

PREPARE DEFER

NODEFER

� �

ENABLE ALL

DISABLE
ENABLE

identifier

BATCH
DLIBATCH
DB2CALL
CICS
IMS
IMSBMP
IMSMPP
REMOTE

�����������������

ENVIRONMENT

RRSAF

� �

QUALIFIER user CURRENTDATA NO
YES

� �

DEGREE 1
ANY

common clauses

� �

 .
;

�

 ASG-Manager Products Relational Technology Support: DB2

374

system is the name of a SYSTEM or MMR-SYSTEM member

program is the name of a PROGRAM member

module is the name of a MODULE member

package is as defined above

collection is the name of a DB2-COLLECTION member.

identifier is:

where:

connection-name is a DL/I Batch Support Facility connection name

applid is a CICS connection identifier

imsid is an IMS Region name that is used as a connection identifier to invoke the DB2
attachment facility

luname is a logical unit name for a non-DB2 requester as defined at the server location

location-name is the name of a DB2-LOCATION member.

All of the connection name identifiers must be delimited, except for location-name
which refers to a repository member.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

� �

DLIBATCH

��

�����������������

CICS

IMSBMP

IMSMPP

REMOTE

connection-name

applid
������

imsid
������

������

imsid

���

���������

LUNAME

LOCATION

luname

location-name
����������������

9 Repository Member Types

375

DB2-PLAN
DB2-PLAN defines DB2 application plans in the repository.

Refer to "DB2-PLAN Syntax" on page 380 for the syntax of the DB2-PLAN member
definition.

To define an application plan in the repository, enter:

DB2-PLAN

The member definition must begin with this member type identifier. All other clauses
available to define DB2-PLAN members are optional. However the CREATOR-OWNER
and CONTAINS clause must be defined for the successful generation of BIND and
REBIND subcommands.

Usually MODULE members are used to represent modules of code containing embedded
SQL statements, but PROGRAM, MMR-SYSTEM, or SYSTEM members can also be
used. The source code modules are passed through DB2 Precompiler to produce
precompiled code modules and Database Request Modules (DBRMs). The BIND or
REBIND subcommand is used to bind together the DBRMs and so produce the
application plan in the DB2 database. The precompiled code is compiled and link-edited
to form the application program that uses the plan to access DB2.

The BIND and REBIND subcommands can be generated from DB2-PLAN definitions
using the DB2 BIND and DB2 REBIND commands respectively.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-PLAN member definitions using an AS clause.

Defining an Owner
To define the owner of a plan, enter:

CREATOR-OWNER user

where user is the name of a DB2-USER or SQL-USER member, and represents the
authorization ID of the owner of the plan.

On encoding, the member specified in the CREATOR-OWNER clause is checked to
ensure that it is a DB2-USER or SQL-USER member.

The clause must be present for the successful generation of SQL statements, but it can be
overridden by an SQLID clause defined in a DB2 command.

 ASG-Manager Products Relational Technology Support: DB2

376

Specifying the Members that Represent DBRMs
To specify the members that represent the database request modules bound into the plan,
enter:

CONTAINS member-list

where member-list is the name of one or more MODULE, PROGRAM,
MMRSYSTEM, SYSTEM, or DB2-PACKAGE members, separated by commas.

On encoding, the members specified in the CONTAINS clause are checked to ensure that
they are MODULE, PROGRAM, MMR-SYSTEM, SYSTEM, or DB2-PACKAGE
members.

DB2-PACKAGEs can be specified either generically or individually. See "Expanding
Packagelist Entries when Importing Plans" on page 292 for further information on
generic packagelist.

If generic package names are required, the following packages must be added to the
repository:

PLAN CONTAINS

PK-ALL-ALL-ALLDB2-PACKAGE
ALIAS SQL '*'
COLLECTION CL-*-*

CL-ALL-ALLDB2-COLLECTION
ALIAS SQL '*'
LOCATION '*'

LN-ALLDB2-LOCATION
ALIAS SQL '*'

Defining Bind Parameters
The optional clauses in Table 24 allow you to define parameters within which the BIND
or REBIND subcommands produce the application plan:

Table 24 Optional Clauses

Clause Alternatives

PREPARE DEFER NODEFER

VALIDATE RUN BIND

ISOLATION RR CS UR

ACQUIRE USE ALLOCATE

9 Repository Member Types

377

You can only define one option for each parameter. The clauses correspond to the
keywords in the BIND and REBIND subcommands, defined in the IBM documentation
and their meanings are the same. Additional parameters can be defined using the DB2
BIND or DB2 REBIND commands.

Note:
For the successful generation of BIND and REBIND subcommands you must define
RELEASE DEALLOCATE with ACQUIRE ALLOCATE.

Specifying Dynamic or Static Rules
You can specify whether dynamic or static rules will apply to a dynamic SQL statement
at run time, using the DYNAMICRULES keyword. To specify that dynamic rules apply,
enter:

DYNAMICRULES RUN

To specify that static rules apply, enter:

DYNAMICRULES BIND

For further information on the effects of static rules, refer to the IBM documentation.

Specifying Whether to Keep Dynamic Rules
You can specify whether or not dynamic rules will be kept after the commit point using
the KEEPDYNAMIC keyword. To specify that dynamic rules will be kept, enter:

KEEPDYNAMIC YES

If you do not wish to keep the dynamic rules after commit points, enter:

KEEPDYNAMIC NO

RELEASE COMMIT DEALLOCAT
E

EXPLAIN YES NO

CURRENTDATA YES NO

DEGREE 1 ANY

SQLRULES DB2 STD

DISCONNECT EXPLICIT AUTOMATIC CONDITIONA
L

Table 24 Optional Clauses

Clause Alternatives

 ASG-Manager Products Relational Technology Support: DB2

378

Specifying Whether to Determine an Access Path
You can specify whether to determine an access path at runtime. To specify that access
paths will be determined using default values for input variables, enter:

VARS NOREOPT

To specify that access paths will be determined using the values of input host variables,
enter:

VARS REOPT

Specifying a Current Server
To specify a connection to a location for the PLAN, enter:

CURRENTSERVER location-name

where location-name is the name of a DB2-LOCATION member. During plan
allocation, the server’s CURRENT SERVER register is set to the location specified. The
default is the current DBMS.

Specifying a Cache Size
You can specify the size (in bytes) of the authorization cache to be acquired in the
EDMPOOL for the plan. To specify a cache size enter:

CACHESIZE value

where value is a number in the range 0 to 4096. The default value is 1024. If you specify
a value that is not a multiple of 256, DB2 will round it up to the next highest multiple of
256.

Generic Package Lists
DB2 PLAN members can CONTAIN packages with generic names, so that during BIND,
the PKLIST generated does not have to refer to each package by name. See "Expanding
Packagelist Entries when Importing Plans" on page 292 for more information regarding
how to set up these members.

Specifying the System Environment
You can enable or disable connections to specific environments using the ENABLE and
DISABLE keywords. The ENABLE and DISABLE keywords are mutually exclusive. To
enable a specific environment, enter:

ENABLE ENVIRONMENT environment

and to disable a specific environment, enter:

DISABLE ENVIRONMENT environment

9 Repository Member Types

379

where environment is the name of the environment to be enabled or disabled.

If a connection type is disabled, the plan is unable to access that environment type.

You may enable all environments by entering:

ENABLE ALL

and DB2 accepts this as the default if neither ENABLE nor DISABLE is present in the
member definition. You cannot, however, disable all environments.

Whenever you specify an environment type to be enabled or disabled, you may specify an
environment name. The name is only allowed if the appropriate environment type has
been previously specified.

Example
The DB2-PLAN member DB1-PLAN6 is defined in the repository using an ADD
command. An SQL statement is generated from the member definition using a DB2
BIND command.

1 The plan name is derived from the member name and is reduced to eight characters.

2 The owner name is derived from the CREATOR-OWNER clause.

3 The DBRM names are derived from the CONTAINS clause. Each name is reduced
to eight characters.

;

RELEASE (DEALLOCATE)
 EXPLAIN (YES)
CURRENTSERVER (MSHI)
CURRENTDATA (YES)
CACHESIZE (256)
DEGREE (1)
SQLRULES (DB2)
DISCONNECT (EXPLICIT)
DYNAMICRULES RUN

ISOLATION (RR)
ACQUIRE (ALLOCATE)

Repository Definition BIND subcommand

ADD DB1-PLAN6;
 DB2-PLAN
 CREATOR-OWNER SLJ1
 CONTAINS DB1-ACCESS-MOD
 ,DB1-PROC-MODD
 ,DB1-CLOSE-MOD

PREPARE NODEFER
VALIDATE BIND
ISOLATION RR
ACQUIRE ALLOCATE
RELEASE DEALLOCATE
EXPLAIN YES
CURRENTSERVER MSHI
CURRENTDATA YES
CACHESIZE 256
DEGREE 1
SQLRULES DB2
DISCONNECT EXPLICIT
-DYNAMICRULES RUN

1

2

BIND PLAN (DB1_PLAN)
OWNER (SLJ1)
MEMBER (DB_AC_MO
 ,DB_PR_MO
 ,DB_CL_MO)

NODEFER (PREPARE)
VALIDATE (BIND)

ACTION (ADD)
FLAG (W)

3

4

5

 ASG-Manager Products Relational Technology Support: DB2

380

4 The ACTION and FLAG parameters are derived from the DB2 BIND command.

5 The remaining bind parameters are derived directly from the member definition.

DB2-PLAN Syntax

where:

member is the name of a DB2-PLAN member

user is the name of a DB2-USER or SQL-USER member

� �� DB2-PLAN
AS member CREATOR-OWNER user

QUALIFIER user module
program
system
package

CONTAINS
� �

��������������������

� �

VALIDATE RUN
BIND

ISOLATION
CS
UR

 RR

� �

EXPLAIN

DEALLOCATE
NORELEASE
YES

COMMIT

� �

CURRENTSERVER locationCACHESIZE value

� �

DEGREE

YES

1CURRENTDATA
ANY

NO

� �

SQLRULES DB2
STD

DISCONNECT EXPLICIT
AUTOMATIC
CONDITIONAL

� �

KEEPDYNAMIC NO

YES

VARS REOPT

NOREOPT

PREPARE DEFER

NODEFER

� �

ENABLE ALL

DISABLE
ENABLE

identifier

BATCH
DLIBATCH
DB2CALL
CICS
IMS
IMSBMP
IMSMPP

�����������������

ENVIRONMENT

RRSAF

� �

common clauses

� �

 .
;

�

9 Repository Member Types

381

module is the name of a MODULE member

program is the name of a PROGRAM member

system is the name of a SYSTEM or MMR-SYSTEM member

package is the name of a DB2-PACKAGE member

value is a number from 0 to 4096

location is the name of a DB2-LOCATION member.

identifier is:

where:

connection-name is the name of a DL/I Batch Support Function connection

applid is a CICS connection name that is used as the connection identifier

imsid is an IMS region name.

All these connection name identifiers must be delimited.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

DB2-PRIVILEGE
DB2-PRIVILEGE defines DB2 privileges in the repository.

Refer to "DB2-PRIVILEGE Syntax" on page 390 for the syntax of the DB2-PRIVILEGE
member definition.

To define a DB2 privilege, enter:

DB2-PRIVILEGE

� �

DLIBATCH

��

�����������������

CICS

IMSBMP

IMSMPP

connection-name

applid
������

imsid
������

������

imsid

 ASG-Manager Products Relational Technology Support: DB2

382

The member definition must begin with this member type identifier. All other clauses
available to define DB2-PRIVILEGE members are optional.

Note:
See the TO-clause for the necessary SQL parameters.

You can define privileges on:

• Databases

• Tables

• Plans

• Buffer pools

• Storage groups

• Table spaces

• The DB2 system

• Collections

You can generate SQL GRANT or REVOKE statements from DB2-PRIVILEGE
members using the DB2 GRANT and DB2 REVOKE commands.

All privileges, except SYSTEM and USE privileges, give access to particular DB2
objects. For example, a DATABASE privilege gives a user access to a specific, named
database, defined in the ON clause.

You can record the grantors and recipients of privileges, and optionally define that the
recipient may pass on the privilege to another user.

Only remove a DB2-PRIVILEGE member from the repository if you have generated an
SQL REVOKE statement and do not need the member any more. If you need to grant the
privilege again, retain the member, so that the repository reflects your long-term security
arrangements.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-PRIVILEGE or SQL-PRIVILEGE member definitions using an AS
clause.

9 Repository Member Types

383

Defining the Grantor of a Privilege
To define the user who is granting the privilege, enter:

GRANTOR user

where user is the name of a DB2-USER or SQL-USER member and represents the
authorization ID of the user who is granting the privilege. The grantor is usually a
database administrator for a project.

On encoding the GRANTOR clause is checked to ensure that the member named is a
DB2-USER or SQL-USER member. The clause is not used in the generation of SQL
statements and is for documentation purposes only.

Defining Database Privileges
To define privileges on databases, enter:

DATABASE

followed by one, several or all of the following optional keywords that correspond to
privileges allowed in DB2:

DBADM
DBCTRL
DBMAINT
CREATETAB
CREATTS
DISPLAYDB
DROP
IMAGCOPY
LOAD
RECOVERDB
REORG
REPAIR
STARTDB
STOPDB
STATS

The privileges are identified by the same keywords as those defined in the IBM
documentation, and have the same meaning.

On encoding, the DATABASE clause is checked to ensure that the privileges specified
are valid.

For the successful generation of SQL statements, the DB2-DATABASE to which the
privilege applies must be defined using an ON clause.

 ASG-Manager Products Relational Technology Support: DB2

384

Defining Plan Privileges
To define privileges on plans, enter:

PLAN

followed by one or both of the following privileges:

BIND
EXECUTE

The privileges are identified by the same keywords as those defined in the IBM
documentation, and have the same meaning.

On encoding, the PLAN clause is checked to ensure that the privileges specified are valid.

For the successful generation of SQL statements, the DB2-PLAN to which the privilege
applies must be defined using an ON clause.

Defining System Privileges
To define privileges to monitor and maintain the system, enter:

SYSTEM

followed by one, several or all of the following privileges:

SYSADM
SYSOPR
BINDADD
BSDS
CREATEALIAS
CREATEDBA
CREATEDBC
CREATEESG
CREATETMTAB
DISPLAY
RECOVER
STOPALL
STOSPACE
TRACE
MONITOR1
MONITOR2

The privileges are identified by the same keywords as those defined in the IBM
documentation, and have the same meaning.

On encoding, the SYSTEM clause is checked to ensure that the privileges specified are
valid.

9 Repository Member Types

385

Defining Table or View Privileges
To grant privileges on a table or view, enter:

TABLE

followed by one, several or all of the following privileges:

ALTER
DELETE
INDEX
INSERT
SELECT
REFERENCES
UPDATE

The privileges are identified by the same keywords as those defined in the IBM
documentation, and have the same meaning.

To optionally define the column that the REFERENCES privilege applies to in the table
or view, enter:

COLUMNS column-name

where column-name is the unqualified name of a column in a table that is identified in
the ON clause.

To optionally define the columns that the UPDATE privilege applies to in the table or
view, enter:

UPDATE column-definition

where column-definition is either:

(integer) member KNOWN-AS local-name, or:

group EXPAND

integer is the number of columns to be generated from the member

member is the name of an ITEM or GROUP member

local-name is the name of the column

group is the name of a GROUP member.

Refer to the documentation of the DB2-TABLE member type for details of defining
columns.

 ASG-Manager Products Relational Technology Support: DB2

386

On encoding, the TABLE clause is checked to ensure that the privileges specified are
valid.

For the successful generation of SQL statements, the DB2-TABLE or DB2-VIEW to
which the privilege applies must be defined using an ON clause.

Defining Collection Privileges
To grant privileges on a collection, enter:

COLLECTION

followed by one or both of the following privileges:

CREATE
PACKADM

Defining ALL Table or View Privileges
To grant all the privileges on a table or view, enter:

ALL

For the successful generation of SQL statements, the DB2-TABLE or DB2-VIEW to
which all the table privileges apply must be defined using an ON clause.

Defining Use Privileges
To specify the privilege to use buffer pools, enter:

USE BUFFERPOOL bufferpool-name

where bufferpool-name is one or more of the following buffer pools, separated by
commas: BP0, BP1, BP2, BP3, BP4, BP5, BP6, BP7, BP8, BP9, BP10, BP11l, BP12,
BP13, BP14, BP15, BP16, BP17, BP18, BP19, BP20, BP21, BP22, BP23, BP24, BP25,
BP26, BP27, BP28, BP29, BP30, BP31, BP32, BP33, BP34, BP35, BP36, BP37, BP38,
BP39, BP40, BP41, BP42, BP43, BP44, BP45, BP46, BP47, BP48, BP49, BP32K,
BP32K1, BP32K2, BP32K3, BP32K4, BP32K5, BP32K6, BP32K7, BP32K8, BP32K9,
BP8K0, BP8K1, BP8K2, BP8K3, BP8K4, BP8K5, BP8K6, BP8K7, BP8K8, BP8K9,
BP16K0, BP16K1, BP16K2, BP16K3, BP16K4, BP16K5, BP16K6, BP16K7, BP16K8,
BP16K9.2.5

To specify the privilege to use all buffer pools, enter:

USE BUFFERPOOL ALL

To specify the privilege to use named storage groups, enter:

USE STOGROUP stogroup-name

9 Repository Member Types

387

where stogroup-name is the name of one or more DB2-STOGROUP members,
separated by commas.

To specify the privilege to use named table spaces, enter:

USE TABLESPACE tbspace-name

where tbspace-name is the name of one or more DB2-TBSPACE members, separated
by commas.

Note:
You can specify only one USE clause.

On encoding, the USE clause is checked to ensure that the privilege specified is valid.

Defining the Object to Which the Privilege Applies
To define the object to which the privilege applies, enter:

ON member

where member is the name of one of these members:

• DB2-DATABASE for database privileges

• DB2-PLAN for plan privileges

• DB2-TABLE, DB2-VIEW, SQL-TABLE, or SQL-VIEW for table and all table
privileges.

This clause must be present for the successful generation of SQL statements.

Defining Recipients of a Privilege
To define the user to whom the privilege applies, enter:

TO user

where user is the name of a DB2-USER or SQL-USER member, and represents the
authorization ID of the user.

To define that the privilege applies to all users on the local subsystem, enter:

TO PUBLIC

To define that the privilege applies to all users on the local and global system, enter:

TO PUBLIC AT ALL LOCATIONS

 ASG-Manager Products Relational Technology Support: DB2

388

If you want to interrogate the repository to find out which privileges are granted to all
users, define a DB2-USER member named PUBLIC.

To optionally specify that the recipient(s) of the privilege may transfer it to another user
enter:

WITH-GRANT-OPTION

The TO clause must be present for the successful generation of an SQL statement.

Example of a DB2-PRIVILEGE Definition for a Database, and Generated SQL Statement

1 The type of privilege being granted is taken directly from the member definition.

2 The DB2 name for the database on which the privilege is being granted is derived
from the SQL ALIAS defined in the DB2-DATABASE member.

3 The DB2 name of the user to whom the privilege is being granted is derived from the
SQL ALIAS of the DB2-USER member, DB2U-PRODUCTION- DBA1.

4 WITH GRANT OPTION is derived from the WITH-GRANT-OPTION keyword in
the member definition.

Repository Definition SQL Statement

ADD PRIV1;
DB2-PRIVILEGE
GRANTOR SLJ1
DATABASE DBMAINT
ON DB-DAA101C
TO DB2U-PRODUCTION-DBA1

1
2

GRANT DBMAINT
 ON DATABASE DAA101C
 TO PRODDBA1
 WITH GRANT OPTION
;

3
4WITH GRANT OPTION

;

9 Repository Member Types

389

Example of a DB2-PRIVILEGE Definition for a Table and Generated SQL Statement

1 The type of privilege being granted is taken directly from the member definition.

2 The DB2 name for the column on which the update privilege is granted is taken from
the local name, defined in the KNOWN-AS clause.

3 The DB2 name of the table on which the privilege is being granted is derived from
the SQL ALIAS defined in the DB2-TABLE, qualified by the SQL ALIAS of the
DB2-USER member defined as the CREATOR-OWNER of the DB2-TABLE.

4 The DB2 name of the user to whom the privilege is being granted is derived from the
SQL ALIAS of the member DB2U-PRODUCTION-DBA2.

Example of a DB2-PRIVILEGE Definition for a Buffer Pool and Generated SQL Statement

1 The type of privilege being granted is taken directly from the member definition.

2 The DB2 name of the user to whom the privilege is being granted is taken directly
from the name of the member USER1.

3 WITH GRANT OPTION is derived from the WITH-GRANT-OPTION keyword in
the member definition.

Repository Definition SQL Statement

ADD PRIV2;
DB2-PRIVILEGE
GRANTOR SLJ1
TABLE UPDATE
 CONTAINS ITEM1
 KNOWN-AS EMP-CODE

1

2

GRANT UPDATE (EMP_CODE)
 ON TABLE PROD.TAA101C
 TO PRODDBA2

 3
4

ON DB2-TAA101C
TO DB2U-PRODUCTION-DBA2
; ;

Repository Definition SQL Statement

ADD PRIV3;
DB2-PRIVILEGE
GRANTOR SLJ1
USE BUFFERPOOL BP2
TO USER1
WITH-GRANT-OPTION

1
2

GRANT USE OF BUFFERPOOL BP2
 TO USER1
 WITH GRANT OPTION3

; ;

 ASG-Manager Products Relational Technology Support: DB2

390

DB2-PRIVILEGE Syntax

where:

privilege is the name of a DB2-PRIVILEGE or SQL-PRIVILEGE member

user is the name of a DB2-USER or SQL-USER member.

database-privileges are:

� �� DB2-PRIVILEGE
AS privilege GRANTOR user

� �

DATABASE database privilege
�������������

PLAN

TABLE table-privilege

COLLECTION

ON database
���������

ON planBIND
EXECUTE

ON
ALL

�������

table
view
�������������

��������

CREATE

PACKADM

ON collection

PACKAGE ALL ON package
������������

BIND

���������

EXECUTE
RUN

COPY

SYSTEM system-privilege

USE use-of-privileges
� �

TO user
PUBLIC

�������

WITH-GRANT-OPTION
AT-ALL-LOCATIONS

� �

common clauses
� �

 .
;

�

� �

DBADM
DBCTRL
DBMAINT
CREATETAB
CREATETS
DISPLAYDB
DROP
IMAGCOPY
LOAD
RECOVERDB
REORG
REPAIR
STARTDB
STATS
STOPB

�������������������������

9 Repository Member Types

391

where:

database is the name of a DB2-DATABASE member

plan is the name of a DB2-PLAN member.

table-privileges are:

where column-name is the name of a column in a table identified in the ON clause.

where columns are:

where:

n is the number of columns in a column set.

item is the name of an ITEM member.

group is the name of a GROUP member.

local-name is a name, of no more than 18 characters.

table is the name of a DB2-TABLE or SQL-TABLE member.

view is the name of a DB2-VIEW or SQL-VIEW member.

collection is the name of a DB2-COLLECTION member.

package is the name of a DB2-PACKAGE member.

� �

ALTER
DELETE
INDEX
INSERT
SELECT
REFERENCES

UPDATE

�������������������������

CONTAINS columns
����������

COLUMNS column-name
����������

� �
(n)

item
group

group EXPAND

KNOWN-AS local-name

 ASG-Manager Products Relational Technology Support: DB2

392

system-privileges are:

use-of-privileges are:

where:

bpname is BP0, BP1, BP2, BP3, BP4, BP5, BP6, BP7, BP8, BP9, BP10, BP11, BP12,
BP13, BP14, BP15, BP16, BP17, BP18, BP19, BP20, BP21, BP22, BP23, BP24, BP25,
BP26, BP27, BP28, BP29, BP30, BP31, BP32, BP33, BP34, BP35, BP36, BP37, BP38,
BP39, BP4O, BP41, BP42, BP43, BP44, BP45, BP46, BP47, BP48B, BP49, BP32K,
BP32K1, BP32K2, BP32K3, BP32K4, BP32K5, BP32K6, BP32K7, BP32K8, BP32K9,
BP8K0, BP8K1, BP8K2, BP8K3, BP8K4, BP8K5, BP8K6, BP8K7, BP8K8, BP8K9,
BP16K0, BP16K1, BP16K2, BP16K3, BP16K4, BP16K5, BP16K6, BP16K7, BP16K8,
BP16K9.2.5

stogroup-name is the name of a DB2-STOGROUP member.

tbspace-name is the name of a DB2-TBSPACE member.

user is as defined above.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

� �

ARCHIVE
BINDAGENT
SYSCTRL
SYSADM
SYSOPR
BINDADD
BSDS
CREATEALIAS
CREATEDBA
CREATEDBC
CREATESG

DISPLAY
RECOVER
STOPALL
STOSPACE

�������������������������

TRACE
MONITOR1
MONITOR2

CREATETMTAB

� �

STOGROUP stogroup-name

user ALL

�������������������

bpnameBUFFERPOOL

TABLESPACE tbspace-name

����������������

����������������

9 Repository Member Types

393

DB2-PROCEDURE

DB2-PROCEDURE defines DB2 procedures and functions. 2.5

In the DB2 environment, stored procedures are kept in the DB2 catalog and can be called
by applications or activated by triggers.

Refer to "Reusing Existing Member Definitions" on page 464 for details on reusing all or
part of existing DB2-PROCEDURE member definitions using an AS clause.

DB2-PROCEDURE Syntax

where:

alias is the name of a DB2-PROCEDURE member.

uses is the name of a DB2-USER member.

parm-name is the name of an ITEM member.

Refer ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

returns-clause is:

where:

table is the name of a DB2-TABLE member.

type-return is:

� �� DB2-PROCEDURE
AS alias

� �

CREATOR-OWNER uses
� �

PARAMETERS parm-name
;

IN
OUT

� �

returns-clause
� �

optionsoptions common-clauses
;

� �RETURNS TYPE type-return
TABLE table
COLUMNS columns-return

 ASG-Manager Products Relational Technology Support: DB2

394

where:

type is the name of an ITEM member that defines a valid DB2 type.

cast is the name of an ITEM member.

column-return is:

where:

column is the name of an ITEM member that defines the type of the returned
table-column.

options is:

� �type
CAST-FROM cast AS-LOCATOR

� �column
AS-LOCATOR

;

� �

RESULT-SETS integer1
� �

EXTERNAL-NAME name1
� �

LANGUAGE string1
� �

PARAMETER-STYLE

DB2SQL
GENERAL
GENERAL WITH NULLS
STANDARD-CALL
SIMPLE-CALL
SIMPLE-CALL WITH NULLS

� �

DETERMINISTIC YES

NO
� �

CALLED-ON-NULL-INPUT YES

NO

� �

EXECUTES-NO-SQL

SQL
READ-SQL

UPDATES-SQL

9 Repository Member Types

395

where:

integer1 is the maximum number of results or 0.

integer2 is the limit for processor time or 0.

string1 is ASM, COBOL, C, or PLI.

string2 is the name of the Package Collection Id.

string3 is the maximum 254 bytes language environment runtime options.

name1 is the maximum 2 character OS/390 lode module name.

name2 is the explicit name of the WLM environment.

Synonyms include STANDARD-CALL for DB2SQL, SIMPLE-CALL for GENERAL,
and SIMPLE-CALL WITH NULLS for GENERAL WITH NULLS.

� �

DB INFO YES
NO

FENCED YES
NO

� �

COLLID string2 ASUTIME integer2

� �

STAY-RESIDENT YES
NO

� �

PROGRAM-TYPE MAIN
SUB

� �

WLM-ENVIRONMENT

string
NONE

NAME name2
SAME

� �

SECURITY
USE
DB2

DEFINER

� �

RUNOPTS string3

� �

COMMIT-ON-RETURN YES
NO

 ASG-Manager Products Relational Technology Support: DB2

396

DB2-RENAME
DB2-RENAME renames an existing table.

The RENAME statement lets you change the characteristics of a table without physically
copying the data multiple times. To rename an existing table, enter:

DB2-RENAME db2-table-name

DB2-RENAME Syntax

Note:
If RENAME will modify member names in the repository, you must use the MMR
command RELABEL; otherwise this option is not available for BLT.

DB2-STOGROUP
DB2-STOGROUP defines DB2 storage groups in the repository.

Refer to "DB2-STOGROUP Syntax" on page 398 for the syntax of the
DB2-STOGROUP member definition.

To define a DB2 storage group, enter:

DB2-STOGROUP

The member definition must begin with this member type identifier. All other clauses
available to define DB2-STOGROUP members are optional. However, the VOLUMES
and VCAT clauses must be present for the successful generation of SQL CREATE
STOGROUP statements.

Refer to Chapter 4, "Repository Definition," on page 91 for details of generating DB2
storage group names.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-STOGROUP member definitions using an AS clause.

Defining the DASD Volumes on which a Storage Group Resides
To define the DASD volumes on which the storage group resides, enter:

VOLUMES vol-id-list

� �� DB2-RENAME old-table-name
ALIAS alias-type

TO new-table-name
USING exit-routine
AS ALIAS alias-type

9 Repository Member Types

397

where vol-id-list is one or more storage volume names, each of no more than six
characters, and separated by commas. You can define a maximum of 133 storage volume
names.

At least one volume must be defined for the successful generation of an SQL CREATE
STOGROUP statement.

When you generate SQL statements, DB2 names for volumes are taken directly from the
names you specify in this clause.

You can arrange for the Storage Management Subsystem (SMS) to manage the storage
needed for the storage group supports. To do this, enter:

VOLUMES *

Defining Storage Space
To define the VSAM catalog the storage group is to use, enter:

VCAT catalog

where catalog is the name of a VSAM catalog, of no more than eight characters.

When you generate SQL statements, VCAT catalog names are taken directly from the
name you specify in this clause. The VCAT clause must be defined for the successful
generation of SQL CREATE STOGROUP statements.

Defining a VSAM Catalog Password
To define a control or master level password used to access the VSAM catalog, enter:

PASSWORD password

where password is a control or master level VSAM catalog password, of no more than
eight characters.

When you generate SQL statements, the VCAT password is taken directly from the
password you specify in this clause.

Example
The DB2-STOGROUP member SG-SDl00B-300 is defined in the repository using an
add command. An SQL statement is generated from the member definition using a DB2
BIND command.

 ASG-Manager Products Relational Technology Support: DB2

398

1 The storage group name SD100B is taken from the SQL ALIAS.

2 The volume names are taken from the member definition.

3 The VSAM catalog name is taken from the member definition.

4 The password is taken from the member definition. Delimiters are generated to allow
inclusion of special characters.

DB2-STOGROUP Syntax

where:

storage-groups is the name of a DB2-STOGROUP member.

vol-id is a storage volume name, of no more than 6 characters.

catalog is a VSAM catalog name, of no more than 8 characters.

password is a VSAM catalog password, of no more than 8 characters.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

Repository Definition SQL Statement

ADD SG-SD100B-330;
DB2-STOGROUP
ALIAS SQL 'SD100B'
VOLUMES VOL001,

VCAT VSMCAT1

1 CREATE STOGROUP SD100B

3
PASSWORD PASS

VOL002

;

VOLUMES VOL001,
 VOL002
VCAT VSMCAT1
PASSWORD 'PASS'

2

4

� �� DB2-STOGROUP
AS storage-groups

� �

VOLUMES
���������

VCAT catalog

vol-id
*

� �

PASSWORD password common clauses

� �

 .
;

�

9 Repository Member Types

399

DB2-TABLE
DB2-TABLE defines DB2 tables in the repository.

Refer to "DB2-TABLE Syntax" on page 421 for the syntax of the DB2-TABLE member
definition.

Tables are of major interest to the end-user, since they contain the user’s own data and are
not a product of the database administrator or other technical specialist. Therefore the
DB2-TABLE is one of the most used DB2 member types.

To define a DB2 table, enter:

DB2-TABLE

The member definition must begin with this member type identifier.

All other clauses available to define DB2-TABLE members are optional. However, for
the successful generation of SQL statements you must define specific clauses, as follows:

• For ALTER TABLE statement define the CREATOR-OWNER clause

• For CREATE TABLE statements define the CREATOR-OWNER, COLUMNS
and IN clauses

• For COMMENT ON statements define the CREATOR-OWNER and
DB2-COMMENT clauses

• For DECLARE TABLE statements define the CREATOR-OWNER and
COLUMNS clauses

• For DROP TABLE statements define the CREATOR-OWNER clause

• For LABEL ON statements define the CREATOR-OWNER and DB2- LABEL
clauses.

To specify the ITEM and GROUP members that represent the columns of the table, use
the CONTAINS clause. It establishes relationships between a DB2-TABLE and ITEM
and GROUP members, which define the table’s columns. These GROUPs and ITEMs
may also form part of other file and database segment definitions. For example,
installations with IMS may already have GROUP and ITEM definitions in the repository,
which can now be shared with the DB2 environment.

You can define columns:

• Individually, so that one ITEM or GROUP member defines one column

• In sets, so that the same ITEM or GROUP member defines several columns, with
identical attributes

• In cascades from a GROUP member, so that every ITEM nested in a GROUP
member defines one column.

 ASG-Manager Products Relational Technology Support: DB2

400

Sub-clauses within the COLUMNS clause enable you to define:

• The names of columns

• Whether or not the column can contain a null value

• The attributes of the column, for example, if it is a primary key, or if it is to have an
associated comment

• Referential constraints on the table.

Generic clauses enable you to define extra column attributes for relational tables other
than DB2 tables.

The DB2 facilities FIELDPROC, EDITPROC, VALIDPROC, AUDIT, COMMENT, and
LABEL are supported by the FIELDPROC, EDITPROC, VALIDPROC, AUDIT,
DB2-COMMENT, and DB2-LABEL clauses respectively.

You can specify the number of rows in a table using the CARDINALITY clause. This
enables you to calculate the minimum and maximum size of the table.

DB2-TABLE repository definitions can be generated automatically if you use the
Workbench Design Area (WBDA) facilities for DB2 database design.

Refer to Chapter 3, "DB2 Database Design," on page 27 for details of generating
DB2-TABLE member definitions from the WBDA.

Refer to Chapter 4, "Repository Definition," on page 91 for details of the derivation of
DB2 table names.

Refer to Appendix A, "Name Reduction Process," on page 467 for details of generic
relational support.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-TABLE or SQL-TABLE member definitions using an AS clause.

Defining an Owner
To define the owner of a table, enter:

CREATOR-OWNER user

where user is the name of a DB2-USER or SQL-USER member, and represents the
authorization ID of the owner of the table.

On encoding, the member specified in the CREATOR-OWNER clause is checked to
ensure that it is a DB2-USER or SQL-USER member.

9 Repository Member Types

401

This clause must be present for the successful generation of SQL statements, but it can be
overridden by an SQLID clause defined in a DB2 command.

Note:
The DB2-USER or SQL-USER member named in the CREATOR-OWNER clause is
used to generate user-qualified names for tables. If the DB2-USER has a LOCATION
clause defined, and the DB2 profile is set to three-part name generation, location and
user-qualified names are generated. The location-qualifier can be overridden by a
LOCATION clause defined in a DB2 command.

Defining the Table Space in Which a Table is Created
To define the table space in which the table is created, enter:

IN tbspace

where tbspace is the name of a DB2-TBSPACE member.

On encoding, the member specified is checked to ensure it is a DB2-TBSPACE member.

For the successful generation of SQL statements the DB2-TABLE definition must
include an IN clause, naming a DB2-TBSPACE member. The DB2-TBSPACE must
include an IN clause, naming a DB2-DATABASE. This chain of relationships defines the
database to which the table space and table belong.

Temporary
A table described by the SQL statement CREATE GLOBAL TEMPORARY TABLE and
used to hold data temporarily, such as the intermediate results of SQL transactions.
Temporary tables persist as long as the application supports them.

Auxiliary
For every LOB column of a table there must be an AUXILIARY TABLE. The STORES
attribute names the table containing the LOB column. The COLUMN CONTAINS
attribute specifies the name of this LOB column.2.5

Reusing Existing Column Structures
In DB2, you may wish to create a table with the same column structure as an existing
table, so that you can use it in production and development. To copy the columns of an
existing table in DB2, enter:

LIKE member

where member is the name of a DB2-TABLE, SQL-TABLE, DB2-VIEW, or SQL-VIEW
member.

 ASG-Manager Products Relational Technology Support: DB2

402

When you generate SQL CREATE TABLE statements from a DB2-TABLE that includes
a LIKE clause, the statement also contains a LIKE clause. When the statement is
submitted to DB2, the table or view named in the LIKE clause must exist, or the column
structure cannot be copied.

If you want to generate SQL DECLARE statements or host language data structures from
a DB2-TABLE defined using a LIKE clause, you must also define an AS clause referring
to the same member.

For example:

LIKE TA-TOTAL-STOCK
AS TA-TOTAL-STOCK

defines that the table copies the generated columns of the DB2-TABLE
TA-TOTAL-STOCK.

Defining a Comment on a Table or Column
To define a comment for a table or column, enter:

keyword 'comment'

where keyword is one of these:

• DB2-COMMENT for DB2 tables and columns

• COL-COMMENT for any column

comment is a string of no more than 254 characters, each line of which is within
delimiters.

When generated, lines of comment are concatenated to form a single string. To preserve
spaces between words, insert a space between the last character of each continuing line
and its delimiter.

For example, the DB2-TABLE named MANAGER-NUMBER has an owner of
PERSONNEL and the following comment defined:

DB2-COMMENT 'This table contains the Manager number of every '
'manager in each department'

The following SQL statement can be generated:

COMMENT ON TABLE PERSONNEL.MANAGER_NUMBER IS 'This table cont
ains the Manager number of every manager in each department'

In this example the word contain has been split due to the margins set in the DB2 profile.

9 Repository Member Types

403

The DB2-COMMENT or COL-COMMENT clause must be present for the successful
generation of SQL COMMENT ON statements.

Note:

• For columns, the comment definition must be part of the CONTAINS clause
defining that column or group of columns

• For tables, the comment definition should precede the COLUMNS clause that
defines the columns of the table.

Defining a Label on a Table or Column
To define a label for a table or column, enter:

keyword 'label'

where keyword is one of these:

• DB2-LABEL for DB2 tables and columns

• COL-LABEL for any column

label is a string of no more than 30 characters, within delimiters.

The DB2-LABEL or COL-LABEL clause must be present for the successful generation
of SQL LABEL ON statements.

Note:

• for columns, the label definition must be part of the CONTAINS clause defining
that column or group of columns

• For tables, the label definition should precede the COLUMNS clause that defines
the columns of the table.

Specifying the Form Description that Defines the Data Type of Columns
To specify which form description, defined in an ITEM or GROUP member, is used to
generate the data type of the columns in the table, enter:

COLUMNS form-keyword

 ASG-Manager Products Relational Technology Support: DB2

404

where form-keyword is one of the following:

• ENTERED-AS

• HELD-AS

• REPORTED-AS

• DEFAULTED-AS.

The form keyword that you define in the COLUMNS clause applies to all the ITEMs and
GROUPs named in the CONTAINS clause that follows.

For example, a DB2-TABLE member containing the following lines:

COLUMNS ENTERED-AS
CONTAINS ITEM1, ITEM2

refers to the two ITEM members:

The ENTERED-AS form keyword in the DB2-ABLE definition specifies that the
ENTERED-AS form description from both ITEMs is used to define the data type of
columns. Therefore the column generated from ITEM1 has a data type of CHAR, and the
column generated from ITEM2 has a data type of DECIMAL. If you do not specify a
form keyword then the DEFAULTED-AS form description is used. Where the ITEM or
GROUP has no DEFAULTED-AS form description defined, then the Manager Products
defaults apply. For further information refer to the ASG-Manager Products Source
Language Generation guide.

Refer to Appendix C, "Defining and Generating DB2 Member Types," on page 475 for
further details of documenting the columns of tables and generating data types.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
form keywords and form description in ITEM and GROUP member definitions.

Specifying the ITEMs or GROUPs that Define Columns
To specify the ITEM or GROUP members that define columns, enter:

CONTAINS member-list

where member-list is the name of one or more ITEM or GROUP members, separated
by commas, each representing a single column.

ITEM1

ITEM
HELD-AS BINARY 10
ENTERED-AS CHAR 5
REPORTED-AS FLOAT 9

ITEM2

ITEM
ENTERED-AS DECIMAL 4.2
DEFAULTED-AS FLOAT 7

9 Repository Member Types

405

On encoding, the members specified in the CONTAINS clause are checked to ensure that
they are either ITEMs or GROUPs. Duplicate column names are not permitted by DB2,
therefore column names are checked on generation to ensure that no duplicates are
present.

Each ITEM can define up to 15 form descriptions. To define which of the form
descriptions you want to use, enter:

CONTAINS item version

where:

item is the name of an ITEM member

version is an integer in the range 1 to 15, and defines the form description version
that you want to use.

For example:

COLUMNS HELD-AS CONTAINS STOCK-LIST 3

defines that the third HELD-AS form description in the ITEM member STOCK-LIST is
used as the column data type.

When you use the SIZE and RECALCULATE commands, the data type of columns is
used to calculate the size of a table.

To define a set of columns with identical attributes, using the same ITEM or GROUP
member, enter:

CONTAINS (integer) member

where:

integer is the number of columns to be derived from the member, within brackets

member is the name of an ITEM or GROUP member.

To resolve duplicated names on generation of an SQL statement, column names are
automatically suffixed by an underscore and a number, the first by _1, the second by_2 an
so on.

 ASG-Manager Products Relational Technology Support: DB2

406

For example:

CONTAINS (4) STOCK-LIST

generates the four columns STOCK_LIST_1, STOCK_LIST_2, STOCK_LIST_3, and
STOCK_LIST_4. The attributes, such as data type, are the same for each of the four
columns.

When a column is derived from a GROUP containing several ITEMs, the data type of the
column is taken as CHAR. The maximum number of characters allowed in the column is
calculated from the combined field lengths of the form descriptions defined in each
ITEM. However, where a DB2 command applied to the DB2-TABLE specifies the
EXPAND keyword, then each ITEM within a GROUP generates a separate column.

Naming Columns
You can explicitly name a column if you do not want its name to be derived from the
ITEM or GROUP name or alias.

To define the name of a column in a table, enter:

KNOWN-AS local-name

where local-name is a string of no more than 18 characters.

For example:

CONTAINS IT-INCOMING KNOWN-AS STOCK-IN

defines that the ITEM member IT-INCOMING generates a table column called
STOCK_IN.

If you use the KNOWN-AS clause to name a set of columns, the local name is duplicated
for each column. To resolve duplicated names on generation of an SQL statement,
column names are automatically suffixed by an underscore and a number, the first by _1,
the second by _2 and so on.

For example:

CONTAINS (3) IT-Q1 KNOWN-AS MONTH

generates three columns from the ITEM member IT-Q1 named MONTH_1, MONTH_2,
and MONTH_3.

Refer to Chapter 4, "Repository Definition," on page 91 for further details of the
generation of column names.

9 Repository Member Types

407

Specifying that Each ITEM Contained in a GROUP Defines One Column
If you want each of the ITEMs contained in a GROUP to represent a column, enter:

CONTAINS group EXPAND

where group is the name of a GROUP member.

For example:

CONTAINS AREA-DEPOT

generates four columns because the GROUP, AREA-DEPOT, contains four ITEMs.

However, if the NO-EXPAND keyword is specified in a DB2 command, the EXPAND
keyword in the member definition is overridden and the GROUP generates a single
column.

Note:
You cannot define a KNOWN-AS clause with expanded GROUPs. The generation of
SQL CREATE statements is unsuccessful if a DB2 command including the EXPAND
keyword is applied to a DB2-TABLE whose columns are named by the KNOWN-AS
clause. This is because the local name is duplicated for every column generated from the
GROUP member.

If the GROUP is nested, that is it contains other GROUPs, each of these is also expanded
so that all ITEMs are used to define columns. Nesting can continue to any depth and is
only limited by the amount of memory available.

ELSE clauses defined in expanded GROUP members generate a column with a CHAR or
VARCHAR data type with a field length equal to the longest overlaid field.

Where a set of columns is derived from an expanded GROUP, each contained ITEM or
GROUP is repeated the number of times specified. If a GROUP contains an ITEM with
its own repeating factor, the ITEM is also repeated the number of times specified.

For example, a DB2-TABLE defined as:

CONTAINS (2) AREA-DEPOT EXPAND

where the GROUP, AREA-DEPOT, contains:

(2) WAREHSE-A
WAREHSE-B

(3) LOCALSTK-A

 ASG-Manager Products Relational Technology Support: DB2

408

generates four columns from WAREHSE-A, two columns from WAREHSE-B, and six
columns from LOCALSTK-A, and names them as follows:

WAREHSE_A_1
WAREHSE_A_2
WAREHSE_B_1
LOCALSTK_A_1
LOCALSTK_A_2
LOCALSTK_A_3
WAREHSE_A_3
WAREHSE_A_4
WAREHSE_B_2
LOCALSTK_A_4
LOCALSTK_A_5
LOCAKSTK_A_6

Expanded GROUPs and Host Language Data Structures
The member GROUP1 contains nested GROUPs, shown in the following diagram.

When you generate SQL statements or SQL host language data structures, intermediate
levels in the data structure, that is GROUP2 and GROUP3, are removed in order to
generate the following flat, two-level structure:

02 ITEM1
02 ITEM3
02 ITEM5
02 ITEM6
02 GROUP4
02 ITEM4
02 ITEM2

Note:
GROUP4 is treated as an elementary field as it has no lower level. Its data type defaults to
CHAR(l).

Intermediate levels, in the above example GROUP2 and GROUP3, can be shown as
comments.

GROUP1

GROUP2

ITEM1

ITEM2

ITEM3
GROUP3

ITEM4

ITEM5
ITEM6
GROUP4

9 Repository Member Types

409

When you generate host language data structures in working storage, for example for
PL/1, intermediate levels are expanded to give the following nested structure:

02 ITEM1
 02 GROUP2
 03 ITEM3
 03 GROUP3
 04 ITEM5
 04 ITEM6
 04 GROUP4
 03 ITEM4
02 ITEM2

If you consider the original nested structure as a tree and fields that do not have lower
levels as leaves, then the root of the tree is taken as the first level and only the leaves of
the tree are taken as the second level.

There is one exception to this rule: when COBOL data structures are generated,
VARCHAR and VARGRAPHIC characters are not treated in this way, since they have a
two-level structure anyway.

Refer to the PRODUCE command for details of generating host language data structures.

Defining Column Attributes
You can define additional attributes for a table’s column(s) using sub-clauses within the
CONTAINS clause. If the CONTAINS clause defines a column set or an expanded
GROUP, the generated column attributes apply to all the columns in the set.

To specify the contents of the column as single-byte data, enter:

FOR-SBCS-DATA

To specify the contents of the column as mixed data, enter:

FOR-MIXED-DATA

To specify the contents of the column as bit (binary) data, enter:

FOR-BIT-DATA

Note:
The FOR-BIT-DATA keyword is only valid where columns have the data-type of
CHAR, VARCHAR, or LONG VARCHAR specified in the form description.

To define that columns cannot contain a null value, and are set to a default value by DB2,
enter:

WITH-DEFAULT

 ASG-Manager Products Relational Technology Support: DB2

410

The WITH-DEFAULT keyword generates NOT NULL WITH DEFAULT in SQL
statements.

To specify that a column cannot contain a null value, enter:

NOT-NULL

NOT-NULL and WITH-DEFAULT are mutually exclusive. If you specify both, the
member will not encode.

Following WITH-DEFAULT you may specify a default value to be assigned to the
column. This may be a constant or any of the literals USER, CURRENT-SQLID, or
NULL. You may also specify a cast-function if the column is defined as a distinct type
column.2.5

The CAST attribute specifies the type ITEM and these default values:2.5

GENERATED is only allowed for ROWID columns and must be specified.2.5

ALWAYS specifies that the row ID is generated for every insert or load of a table.

BY-DEFAULT specifies that the row ID is only generated, if the ROWID is not
already filled.2.5

To specify a check constraint on a column, to specify which values of the column are
valid, enter:

CHECK-CONSTRAINT NAMED constraint-name CONDITION 'check-condition'

where:

check-condition is an expression up to 255 bytes long and may be repeated as many
times as required, as long as the CONDITION keyword is also repeated (no comma)

constraint-name is an SQL long identifier of up to 18 characters.

You may apply a check constraint to one or more columns in a table when it is created or
altered.

Columns with a data type of CHAR can also have an associated FIELDPROC procedure,
provided WITH-DEFAULT is not defined. To define a FIELDPROC, enter:

FIELDPROC process

where process is the name of a SYSTEM, MMR-SYSTEM, PROGRAM, or MODULE
member, and represents a field procedure that exists in DB2.

9 Repository Member Types

411

To define the parameters passed to the field procedure, enter:

CONSTANT list

where list is one or more parameters separated by commas. The list must be no more
than 254 characters, within delimiters.

For example:

CONTAINS IT-INCOMING NOT-NULL FIELDPROC MOD-XT3 CONSTANT
"CONST4-3, CONST4-4"

defines that the ITEM member IT-INCOMING generates a column that:

• Cannot contain a null value, and

• Uses the process member MOD-XT3, passing the parameters CONST4-3 and
CONST4-4.

To define that a column forms the primary key of a table, enter:

PRIMARY-KEY

A primary key can comprise a maximum of 16 columns. For the successful generation of
an SQL CREATE TABLE statement, columns defined as PRIMARY-KEY must also be
defined as either NOT-NULL or WITH- DEFAULT.

Where your primary key consists of several columns, the sequence in which columns
constitute the key is assumed to be the sequence in which they are defined, unless you
specify the key position.

To define the position of the column in a multi-column primary-key, enter:

PRIMARY-KEY kpos

where kpos is an integer in the range 1 to 16

For example:

CONTAINS
 DEPT-NO
,EMP-NO NO-NULL PRIMARY-KEY 2
,JOB-TITLE
,EMP-NAME NOT-NULL PRIMARY-KEY 1

defines that the primary key of this table is EMP-NAME followed by EMP-NO, rather
than EMP-NO followed by EMP-NAME.

 ASG-Manager Products Relational Technology Support: DB2

412

To define that the entries in a primary key column are sorted in ascending key order in the
index, enter:

PRIMARY-KEY ASC

To define that the entries in a primary key column are sorted in descending key order in
the index, enter:

PRIMARY-KEY DESC

To define a unique key composed of the identified columns, enter:

UNIQUE column-name

where column-name consists of the names of a number of columns (not exceeding 64)
which must be defined as NOT NULL or NOT NULL WITH DEFAULT. To define that
a column is to contain a comment enter:

DB2-COMMENT 'comment'

To define that a column is to contain a label enter:

DB2-LABEL 'label'

Defining Generic Column Attributes
If you use the DB2-TABLE member type to define other types of relational table, for
example ORACLE or SQL/DS tables, additional column attributes are available.

To define the percentage of free space in a primary key, enter:

PCTFREE pn

where pn is an integer in the range 0 to 99.

To define column comments for a relational table, enter:

COL-COMMENT 'comment'

To define column labels for a relational table, enter:

COL-LABEL 'label'

COL-COMMENT and COL-LABEL are alternatives to DB2-COMMENT and
DB2-LABEL, and follow the same rules.

9 Repository Member Types

413

To define a relationship between a member representing columns of a relational table and
another repository member, enter:

column-relationship member

where:

column-relationship is COL-REL1, COL-REL2, or COL-REL3.

member is the name of a repository member.

To define additional attributes for columns in a relational table, enter:

column-attribute 'string'

where:

column-attribute is COL-ATT1, COL-ATT2, or COL-ATT3.

string is a string of no more than 254 characters, within delimiters.

Note:
COL-COMMENT and COL-LABEL can be used to generate comments and labels for
DB2 tables, but the other clauses are ignored by DB2 commands.

Refer to Appendix B, "Documenting Other Relational Databases," on page 471 for
further details of defining repository members for other types of relational database.

Defining Referential Constraints
To define a referential constraint for a table, enter:

CONSTRAINT constraint

where constraint is one, several or all of these:

• The NAMED clause defines a constraint name

• The FOREIGN-KEY clause specifies one or more columns to form the foreign key

• The REFERENCES clause specifies the table being referenced

• The COLUMNS clause specifies the column being referenced

• The DELETE clause defines the associated DELETE rule.

You may define any number of referential constraints for a table. Each referential
constraint requires its own CONSTRAINT clause. Each CONSTRAINT clause must
include the FOREIGN-KEY and REFERENCES clauses for the successful generation of
SQL CREATE statements.

 ASG-Manager Products Relational Technology Support: DB2

414

You can name a referential constraint without specifying the column(s) that form the
foreign key. Thus you can set up DB2-TABLE definitions with named referential
constraints between them before deciding on the contents of the tables. This feature is
useful in a top-down approach to database design.

To define a constraint name, enter:

NAMED constraint-name

where constraint-name is the name, of no more than 8 characters, by which the
referential constraint is known to DB2.

Each constraint name must be unique within a table. If you do not specify a constraint
name, a default name is generated by DB2.

To define the foreign key for a constraint, enter:

FOREIGN-KEY

followed by clauses that define the columns that comprise the foreign key, that is:

• Specifying that one or more ITEMs and/or GROUPs each define a single column,
see "Defining a Label on a Table or Column" on page 403

• Specifying that each ITEM contained in a GROUP defines one column, see
"Naming Columns" on page 406.

The columns comprising the foreign key must already be defined in the CONTAINS
clause, as the foreign key must exist as a column of the table.

You can name the foreign key column using the KNOWN-AS clause. When you generate
an SQL statement the name defined in the KNOWN-AS clause is checked against the
column generated. The column name and foreign key name must be the same.

For example, the columns of a table are generated from an expanded GROUP member.
However the foreign key comprises only one of the table’s columns.

The DB2-TABLE definition includes the clauses:

CONTAINS MANY-ITEMS EXPAND
CONSTRAINT FOREIGN-KEY ITEM4 KNOWN-AS COL-4

9 Repository Member Types

415

Although the CONTAINS clause does not name the member ITEM4, the GROUP,
MANY-ITEMS, includes the clauses:

CONTAINS
ITEM1 KNOWN-AS COL-l
, ITEM2 KNOWN-AS COL-2
, ITEM3 KNOWN-AS COL-3
, ITEM4 KNOWN-AS COL-4

The generated table has four columns, COL_l, COL_2, COL_3, and COL_4. The foreign
key column is COL_4.

You can clarify correspondence between members in the repository where:

• Foreign key column names differ from corresponding primary key column names

• Different ITEM and/or GROUP members represent the foreign key columns in one
table and the corresponding primary key columns in another table

except where the foreign key is defined using an expanded GROUP. To specify the
column(s) in another table to which the foreign key refers, enter:

MEMBER member

where member is the name of an ITEM or GROUP member defining the column(s).

Where the name of a foreign key column(s) is different from its name in another table,
you can optionally specify the local name of the column using the KNOWN-AS clause.

To define the table to which a foreign key refers, enter:

REFERENCES table

where table is the name of a DB2-TABLE or SQL-TABLE member.

To successfully generate SQL statements:

• One REFERENCES clause must be defined for each foreign key specified

• The referenced DB2-TABLE must exist and include a valid CREATOR-OWNER
clause.

To define the column name for the constraint, enter:

COLUMNS column-name

where column-name is the name of a column in a DB2-TABLE or SQL-TABLE
member.

 ASG-Manager Products Relational Technology Support: DB2

416

To define the delete rule for the constraint, enter:

DELETE option

where option is RESTRICT, CASCADE, or SET-NULL.

The keywords are similar to those used by DB2 and they have the same meanings.

If you do not define a DELETE rule, the DB2 default applies.

Defining the Encoding Scheme
To specify that the data is to encoded using the ASCII CCSID specified during
installation, enter:

CCSID ASCII

To specify that the data is to be encoded using EBCDIC CCSID specified during
installation, enter:

CCSID EBCDIC

Defining an Edit Routine
To define an edit routine for the table, enter:

EDITPROC process

where process is the name of a SYSTEM, MMR-SYSTEM, PROGRAM, or MODULE
member.

The member represents an edit routine that must exist in DB2. In DB2, the edit routine is
invoked whenever a row in the table is retrieved, updated or inserted.

Defining a Validation Routine
To define a validation routine for the table, enter:

VALIDPROC process

where process is the name of a SYSTEM, MMR-SYSTEM, PROGRAM, or MODULE
member.

The member represents a validation routine that must exist in DB2. In DB2, the
validation routine receives an entire table row as input and may be used to control a
subsequent INSERT, UPDATE, or DELETE statement.

9 Repository Member Types

417

Defining an Audit Option
To define the type of DB2 audit that you wish to be carried out on the table, enter:

AUDIT option

where option is NONE, CHANGES, or ALL.

The keywords are the same as in DB2 and have the same meaning.

If you do not define an AUDIT clause the DB2 default applies.

Specifying the Estimated Number of Rows in a Table
If you want to calculate the total size of a table, using the DB2-SIZE command, you have
to specify the number of rows that it contains.

To specify the number of rows that the table contains, enter:

CARDINALITY integer

where integer is an integer of no more than 18 digits.

If you do not define a CARDINALITY clause a default of 1 is assumed when you issue a
DB2-SIZE command on the DB2-TABLE. The cardinality defined in the member
definition, or the default assumed, can be overridden by the CARDINALITY keyword in
the DB2-RECALCULATE command.

If the CARDINALITY you define is an estimate of the number of rows, the resulting total
size is also an estimate.

Specifying an Object Identifier
You can assign an Object Identifier to be used for the Table by entering:

OBID integer

where integer is a number consisting of up to 18 digits.

The OBID keyword is needed only if ROSHARE READ is selected. If ROSHARE
READ is not selected for this Table, the integer must not identify an existing or
previously used Object Identifier.

Specifying Data Capture
To specify that the logging of SQL INSERT, UPDATE, and DELETE operations on the
Table is augmented by additional information enter:

DATA CAPTURE CHANGES

 ASG-Manager Products Relational Technology Support: DB2

418

To specify that no additional data is added to the log enter: DATA CAPTURE NONE.

This is the default setting.

Example of a DB2-TABLE Definition and Generated SQL Statement

ADD CUST-TABLE-T;
DB2-TABLE
 IN DB2-TS1
 CREATOR-OWNER SLJ1

DB2-COMMENT "CUSTOMERS" NAMES, ADDRESSES"
 "AND CODES"

DB2-LABEL 'CUSTOMER TABLE'

 COLUMN HELD-AS
 CONTAINS
 IT-COL01 3 KNOWN-AS CUST-NO
 FOR-BIT-DATA
 PRIMARY KEY
 NOT-NULL
 FIELDPROC PM-FP1-1
 DB2-LABEL 'CUSTOMER-NUMBER'

 ,IT-COL02 2
 WITH-DEFAULT
 PRIMARY-KEY

 ,IT-COL03 1
 FIELDPROC PM-FP1-2 CONSTANT
 'CONST1, CONST2'

 ,IT-COL04 3
 PRIMARY-KEY
 NOT-NULL

 ,(5) IT-COL04

 ,IT-GRP02
 DB2-COMMENT 'CUSTOMER ADDRESS'

CONSTRAINT
 NAMED CNSTRNT1
 FOREIGN-KEY
 IT-COL01 KNOWN-AS CUST-NO
 MEMBER IT-COL04 KNOWN-AS CUSTCODE
 REFERENCES ORDER-TABLE

EDITPROC PR-EP1-1
VALIDPROC PM-VP1-1
AUDIT NONE

CARDINALITY 600000

;

Repository Definition

1

2
1

11

10

3

4

3

5

4

3

4
5

6

7

8

9

9 Repository Member Types

419

CREATE TABLE SLJ1.CUST_TABLE_T
 (CUST_NO CHAR(15)
 FOR BIT DATA NOT NULL
 FIELDPROC PM_FP1_1

,IT_COL02 DECIMAL(11.5) NOT NULL WITH DEFAULT
,IT-COL03 VARCHAR(150)

,IT-COL04 FLOAT(21) NOT NULL

,IT-COL04_1 FLOAT(21)
,IT-COL04_2 FLOAT(21)
,IT-COL04_3 FLOAT(21)
,IT-COL04_4 FLOAT(21)
,IT-COL04_5 FLOAT(21)

,IT_GRP02 CHAR(100)

 ,IT_COL02
 ,IT_COL04

,FOREIGN KEY CNSTRNT1
 (CUST_NO
 REFERENCES SLJ1.ORDER_TABLE)

) IN DB_CUST.TS_CUST01

EDITPROC PM_EP1_1

AUDIT NONE

LABEL ON TABLE SLJ1.CUST_TABLE_T
 IS 'CUSTOMER TABLE'

LABEL ON SLJ1.CUST_TABLE_T
 (CUST_NO IS 'CUSTOMER_NUMBER')
;

Generated SQL Statement

1
3

3
3

6

4

8

9

10

5

 FIELDPROC PM_FP1_2 (CONST1, CONST2)
3

,PRIMARY KEY (CUST_NO

VALIDPROC PM_VP1_1

;

COMMENT ON TABLE SLJ1.CUST_TABLE_T
 IS 'CUSTOMERS' NAMES, ADDRESSES AND CODES'
;

11

COMMENT ON TABLE SLJ1.CUST_TABLE-T
 (IT_GRP02 IS 'CUSTOMER ADDRESS')
;

12

2

 ASG-Manager Products Relational Technology Support: DB2

420

1 The derived name for the table is the DB2-TABLE member name qualified by the
owner’s DB2 authorization ID.

2 The name of the table space to which the table belongs is taken directly from the
repository definition and qualified by the database name.

3 A column-name is taken from the KNOWN-AS name of the ITEM specified in the
CONTAINS clause, or from the name of the ITEM itself, if no KNOWN- AS name
is specified.

4 All the ITEMs that are specified as being part of the primary key are brought together
in the SQL statement.

5 The label on the column is taken directly from the DB2-LABEL clause in the
member definition.

6 The five occurrences of IT-COL04 specified in the repository definition result in the
generation of five columns, each called IT-COL04; each column is uniquely
identified by the integer suffixed to it.

7 The comment on the column is taken directly from the DB2-COMMENT clause in
the member definition.

8 Details of the foreign key are taken directly from the CONSTRAINT clause of the
member definition.

9 These clauses are generated directly from the corresponding member definition.

10 The DB2-COMMENT associated with the table is taken directly from the
specification in the member definition.

11 The DB2-LABEL associated with the table is taken directly from the specification
in the member definition.

Note:
The automatic generation of SQL COMMENT statements depends upon:

• Specifying the WITH-COMMENT keyword in the DB2 command

• The systems administrator having tailored the command variable
CM_COMMENTOPT in your DB2 profile,

and the automatic generation of SQL LABEL statements depends upon:

• Specifying the WITH-LABEL keyword in the DB2 command

• The systems administrator having tailored the command variable CM_LABELOPT
in your DB2 profile.

9 Repository Member Types

421

DB2-TABLE Syntax

2510

 2.

where:

table is the name of a DB2-TABLE member.

user is the name of a DB2-USER member.

comment is a comment of no more than 254 characters.

label is a label of no more than 30 characters.

tbspace is the name of a DB2-TBSPACE member.

table is as defined above.

view is the name of a DB2-VIEW member.

� �� DB2-TABLE
AS table CREATOR-OWNER user

� �

DB2-COMMENT 'comment' DB2-LABEL 'label'

� �

IN tbspace
TEMPORARY

AUXILIARY STORES table

� �

COLUMNS column-specification

table
view

LIKE PARTITION n

� �

EDITPROC process VALIDPROC process

� �

AUDIT CARDINALITY integerNONE

CHANGES

ALL
� �

OBID integer DATA-CAPTURE NONE
CHANGES

� �

WITH-RESTRICT-ON-DROP CCSID ASCII
 EBCDIC

RENAMED

��

name DATE date-renamed
<<<<<<<<< , <<<<<<<<<<

common-clauses

� � �

;
.

 ASG-Manager Products Relational Technology Support: DB2

422

column-specification is:

where contains-clause is:

where:

integer is the number of columns in a column set.

single-column clause is:

where:

item is the name of an ITEM member.

version is an integer in the range 1 to 15.

group is the name of a GROUP member.

local-name is the name of the column, consisting of no more than 18 characters.

group is as defined above.

� �

ENTERED-AS
HELD-AS
REPORTED-AS
DEFAULTED-AS

CONTAINS contains-clause
����������������

� �

referential-constraint
������������������������

� �
(integer)

group EXPAND

single-column clause

� �

column-attributes

group
version

item� �

 KNOWN-AS local-name
��

9 Repository Member Types

423

column-attributes is:
2.

2.

where:

constraint is the name of the constraint, consisting of no more than 8 characters.

cast-function is:2.

2.

string is up to 255 characters

where fieldproc-block is:

where:

process is the name of a SYSTEM, PROGRAM, or MODULE member

� �

FOR-BIT-DATA
FOR-SBCS-DATA
FOR-MIXED-DATA

UNIQUE GENERATED ALWAYS
BY-DEFAULT

� �

NOT-NULL FIELDPROC fieldproc-block

WITH-DEFAULT
constant
USER
CURRENT-SQLID
NULL
cast-function

CURRENT-SQLID

� �

CONDITION 'string'CHECK-CONSTRAINT NAMED constraint
���������������������

�� constantCAST item
USER

NULL
CURRENT-SQLID

� �

kpos
UNIQUE PRIMARY-KEY

ASC
DESC

PCTFREE pn

� �

DB2-COMMENT 'comment'
COL-COMMENT 'comment'

DB2-LABEL 'label'
COL-LABEL 'label'

COL-REL1 member
��

COL-ATT1 'string'

COL-REL2 member
��

COL-ATT2 'string'

COL-REL3 member
��

COL-ATT3 'string'

��

CONSTANT 'constant-list'
process

 ASG-Manager Products Relational Technology Support: DB2

424

constant-list is a character string of no more than 254 characters which contains one
or more parameters; multiple parameters must be separated by commas.

string is a string of up to 255 characters.

kpos is an integer in the range 1 to 16, and represents the primary key position.

pn is an integer in the range 0 to 99.

comment is as defined above.

label is as defined above.

member is the name of a repository member.

string is a string of up to 254 characters.

referential-constraint is:

where:

constraint-name is the name of the constraint, consisting of no more than 8 characters.

specification is:

where:

single-column-clause is as defined above.

m-clause is:

��

NAMED constraint-name
CONSTRAINT

� �

REFERENCES table
FOREIGN-KEY specifications

��������������

� �

COLUMNS column-name
�����������

� �

RESTRICT
DELETE CASCADE

SET-NULL

group SET
m-clause

single-column-clause� �

 KNOWN-AS local-name
�� MEMBER item

group

9 Repository Member Types

425

where:

group and item are as defined above.

local-name is as defined above.

group is as defined above.

column-name is the name of a column.

process is as defined above

integer is an integer consisting of no more than 18 digits.

integer is as defined above.

table-name is a name for a DB2-RENAME source-table-name.

Refer to ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

DB2-TBSPACE
DB2-TBSPACE defines DB2 table spaces in the repository.

Refer to "DB2-TBSPACE Syntax" on page 434 for the syntax of the DB2-TBSPACE
member definition.

To define a DB2 table space:

DB2-TBSPACE

The member definition must begin with this member type identifier. All other clauses
available to define DB2-TBSPACE members are optional. However, the IN clause
defining the database to which the table space belongs, must be present for the successful
generation of SQL CREATE TABLESPACE, DROP TABLESPACE, or ALTER
TABLESPACE statements.

In DB2, if a table space is partitioned, the corresponding index must also be partitioned.
Therefore for DB2-TBSPACE members defined with a PARTITION clause, you should
define a corresponding clustered DB2-INDEX with the same partitions.

Note:
A DB2-TBSPACE member definition can contain either the PARTITION clause or the
SEGSIZE clause. It cannot contain both, as a table space may not be partitioned and
segmented at the same time.

 ASG-Manager Products Relational Technology Support: DB2

426

Refer to Chapter 4, "Repository Definition," on page 91 for details of generating table
space names.

Defining a Large Table Space
To define a table space as that can hold more than 64 GB of data, enter:

LARGE or LOB2.

This partitioned table space can hold either compressed or uncompressed data with a
maximum of 254 partitions and a maximum size of 4 GB per partition. If LARGE is
specified, NUMPARTS must be specified. If LARGE is omitted and the value for
NUMPARTS is greater than 64, or LARGE is specified and the value for NUMPARTS is
less than 65, then the table space will have the attributes of a large table space.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-TBSPACE member definitions using an AS clause.

Specifying the Database to Which a Table Space Belongs
To specify the database to which a table space belongs enter:

IN database

where database is the name of a DB2-DATABASE member.

On encoding, the member specified in the IN clause is checked to ensure that it is a
DB2-DATABASE member.

The IN clause must be defined to successfully generate SQL CREATE TABLESPACE
and CREATE TABLE statements. The DB2-DATABASE member named in the IN
clause is used to generate a database-qualified name for the table space.

Defining Storage Space
To define the physical space occupied by a table space or partition you can either:

• Define the VSAM catalog it is to use

• Define the storage group it belongs to

To define the VSAM catalog the table space is to use, enter:

VCAT catalog

where catalog is the name of a VSAM catalog, of no more than eight characters.

9 Repository Member Types

427

To define the storage group to which the table space or partition belongs, enter:

STOGROUP stogroup-name

where stogroup-name is the name of a DB2-STOGROUP member.

On encoding, the member specified in the STOGROUP clause is checked to ensure that it
is a DB2-STOGROUP member.

The storage group defined in the DB2-DATABASE definition is the default used by table
spaces:

• That belong to the database

• That do not have a storage group specified in their own member definition.

When you define the STOGROUP clause, you can additionally define further details of
primary and secondary storage using the PRIQTY, SECQTY sub-clauses. Both
sub-clauses are expressed in kilobytes.

To specify the amount of primary storage space, enter:

PRIQTY p

where p is the number of kilobytes, and must be in the range 3 to 4194304 inclusive.

To specify the amount of secondary storage space, enter:

SECQTY s

where s is the number of kilobytes, and must be in the range 0 to 131068 inclusive.

Primary and secondary storage space is allocated in the storage area defined either:

• In the VOLUMES clause of the DB2-STOGROUP member named in the
STOGROUP clause of the DB2-TBSPACE member

• In the storage group defined in the STOGROUP clause of the DB2- DATABASE

You can also specify whether or not DB2-defined datasets are to be erased when the table
space is deleted in a DROP command. If you want the datasets to be erased, enter:

ERASE YES

If you do not want the datasets to be erased, enter:

ERASE NO

If you do not specify PRIQTY, SECQTY, or ERASE subclauses, the DB2 defaults apply.

 ASG-Manager Products Relational Technology Support: DB2

428

Defining Free Space
You can accommodate future expansion of a table space or partition by defining:

• The frequency with which pages are left free

• The percentage of each page that is left free

To define the relative frequency with which free pages are allocated, enter:

FREEPAGE fn

where fn is an integer in the range 0 to 255.

For example, FREEPAGE 4 means that 1 free page is left after every 4 pages.

To define the percentage space kept free on a page, when a table space or partition is
loaded or reorganized, enter:

PCTFREE pn

where pn is an integer in the range 0 to 99.

If you do not define FREEPAGE or PCTFREE clauses, the DB2 defaults apply.

Defining Table Space Partitions
To define that a table space is to have a partition, enter:

PARTITION

You can optionally define a number, and details of storage and free space allocation, for
each partition.

To successfully generate SQL CREATE TABLESPACE statements from
DB2-TBSPACE members containing a PARTITION clause, you must define a
NUMBER clause for each PARTITION.

To give the partition a number, enter:

NUMBER n

where n is an integer in the range 1 to 254. If you do not define the numbers of partitions,
they are automatically generated by the DB2 CREATE command, commencing with 1,
and increasing in increments of 1.

To define the storage space to which the partition belongs use the VCAT, or
STOGROUP, PRIQTY, SECQTY, and ERASE clauses.

9 Repository Member Types

429

To define how much space is left free in the partition, use the FREEPAGE and PCTFREE
clauses.

If you do not define storage or free space for partitions individually, they automatically
take space from that specified for the table space as a whole.

Defining an Associated Buffer Pool
To define the buffer pool that table spaces use, enter:

BUFFERPOOL bufferpool-name

where bufferpool-name is one of: BP0, BP1, BP2, BP3, BP4, BP5, BP6, BP7, BP8,
BP9, BPl0, BP11, BP12, BP13, BP14, BP15, BP16, BP17, BP18, BP19, BP20, BP2l,
BP22, BP23, BP24, BP25, BP26, BP27, BP28, BP29, BP30, BP31, BP32, BP33, BP34,
BP35, BP36, BP37, BP38, BP39, BP40, BP41, BP42, BP43, BP44, BP45, BP46, BP47,
BP48, BP49, BP32K, BP32K1, BP32K2, BP32K3, BP32K4, BP32K5, BP32K6,
BP32K7, BP32K8, BP32K9, BP8K0, BP8K1, BP8K2, BP8K3, BP8K4, BP8K5, BP8K6,
BP8K7, BP8K8, BP8K9, BP16K0, BP16K1, BP16K2, BP16K3, BP16K4, BP16K5,
BP16K6, BP16K7, BP16K8, BP16K9.2.

If you do not define a buffer pool in a DB2-TBSPACE, the default defined in the
DB2-DATABASE to which the table space belongs, applies.

Defining the Encoding Scheme
To specify that the data is to encoded using the ASCII CCSID specified during
installation, enter:

CCSID ASCII

To specify that the data is to be encoded using EBCDIC CCSID specified during
installation, enter:

CCSID EBCDIC

Defining Whether Selective Partition Locking is Used
To define selective partition locking (SPL) in a partitioned table space, enter:

LOCKPART YES

If you specify LOCKPART YES and all conditions required for SPL are met, only the
partitions accessed lock. If all conditions for SPL are not met, every partition of the table
space locks.

To specify no selecting partition locking (SPL), enter: LOCKPART NO

The table space is locked with a single lock on the last partition.

 ASG-Manager Products Relational Technology Support: DB2

430

Defining the Maximum Number of Rows on a Data Page
To specify the maximum number of rows on a data page, enter:

MAXROWS n

where n is an integer in the range 1 to 255.

The default is 255. The MAXROWS value for a table space in a work file database
cannot be specified.

Defining that Datasets are Left Open or Closed After Use
To define that the dataset, on which a table space resides, is to be closed when not in use,
enter:

CLOSE YES

To define that it is to remain open, enter:

CLOSE NO

If you do not define a CLOSE clause the DB2 default applies.

Defining a Dataset Password
To define a password for the VSAM dataset, on which a table space resides, enter:

DSETPASS password

where password is a VSAM dataset password of no more than eight characters.

Defining the Size of a Locking Storage Unit
To define the size of the storage unit that can be locked, enter:

LOCKSIZE unit

where unit is one of the following units of locking:

ANY
PAGE
TABLESPACE or S
TABLE
ROW
LOB2.

If you do not specify a LOCKSIZE the DB2 default applies.

9 Repository Member Types

431

Defining the Maximum Number of Page or Row Locks
To define the maximum number of page or row locks that an application process can hold
simultaneously in the tablespace, enter:

LOCKMAX unit

where unit is one of the following: 0, integer or SYSTEM. For the meaning of these
values refer to the IBM documentation.

Note:
LOCKMAX can be defined only if PAGE or ROW is specified in LOCKSIZE.

Defining Table Space Segments
To define a segmented table space and the number of pages to be allocated to each
segment, enter:

SEGSIZE integer

where integer is a multiple of 4, in the range 4 to 64 inclusive.

Note:
If you define a SEGSIZE clause you cannot define a PARTITION clause, as a segmented
table space cannot be partitioned.

Defining Whether Tablespace is to be Compressed
To define that the rows in a tablespace or tablespace partition are to be compressed enter:

COMPRESS YES

To define no data compression for the tablespace or partition enter:

COMPRESS NO

Defining Group Buffer Pool Usage
To define that all pages are to be cached in the group buffer pool, enter:

GBPCACHE ALL

To define that only updated pages are to be cached in the group buffer pool, enter:

GBPCACHE CHANGED

To add no pages into the group buffer pool, enter:2.

GBPCACHE NONE 2.

 ASG-Manager Products Relational Technology Support: DB2

432

To store only changed system pages enter:

GBPCACHE SYSTEM

To define logging of space map pages, enter: TRACKMOD YES to monitor changes or
TRACKMOD NO to ignore changes.2.

To define logging of LOB changes, enter: LOG YES to activate logging for LOB
columns up to 1GB or LOG NO to not log changes.2.

To define the maximum capacity of a partition valid values are: 1GB, 2GB, 4GB, 8GB,
16GB, 32GB, and 64GB.2.

Examples
The DB2-TBSPACE member TS-TAl00 is defined in the repository using an ADD
command. It represents an unpartitioned table space. An SQL statement is generated from
the member definition using a DB2 CREATE command.

1 The table space name TA 100 is taken from the SQL ALIAS.

2 The database name DAA101C is taken from the SQL ALIAS defined in the DB2-
DATABASE member DB-DAA101C.

3 The storage group name SD100 is taken from the SQL ALIAS defined in the
DB2-STOGROUP member SG-SDl00B.

4 The PRIQTY, SECQTY and BUFFERPOOL parameters are taken from the
repository definition.

The DB2-TBSPACE member TS-TAAl01F is defined in the repository using an ADD
command. The member represents a partitioned table space. An SQL statement is
generated from the member definition using a DB2 CREATE command.

Repository Definition

SQL Statement

ADD TS-TA100;
DB2-TBSPACE
ALIAS SQL 'SD100'
IN DB-DAA101C

1

CREATE TABLESPACE TA100

3

IN DAA101C
USING STOGROUP SD100B
PRIQTY 50
SECQTY 12

2

4

STOGROUP SG-SD100B
PRIQTY 50
SECQTY 12
BUFFERPOOL BP1
;

BUFFERPOOL BP1
;

9 Repository Member Types

433

1 The table space name AVT100D is taken from the SQL ALIAS.

2 The database name DAA101C is taken from the SQL ALIAS defined in the DB2-
DATABASE member DB-DAA101C.

3 The VCAT catalog name and the free space parameters are taken from the repository
definition.

4 The partition specifications are taken directly from the repository definition, (except
for the storage group names, which are taken from the SQL ALIAS defined in the
relevant DB2-STOGROUP member definitions.) The NUMPARTS 3 clause is
generated automatically.

5 The BUFFERPOOL, LOCKSIZE and CLOSE parameters are taken from the
repository definition.

ADD TS-TAA101F;
DB2-TBSPACE
ALIAS SQL 'AVT100D'
 IN DB-DAA101C
 VCAT VSMCAT3
 FREEPAGE 5
 PCTFREE 10

PARTITION NUMBER 1
 STOGROUP 5-SD100B
PARTITION NUMBER 2
 VCAT VSMCAT3
PARTITION NUMBER 3
 STOGROUP SG-SD100B
 PRIQTY 200
 SECQTY 20
 ERASE NO
FREEPAGE 4
PCTFREE 20

BUFFERPOOL BP0
LOCKSIZE PAGE
CLOSE NO
;

CREATE TABLESPACE AVT100D
 IN DAA101C
 USING VCAT VSMCAT3
 FREEPAGE 5
 PCTFREE 10

NUMPARTS 3
(PART 1 USING
 STOGROUP SD100B
,PART 2 USING
 VCAT VMCAT3
,PART 3 USING
 STOGROUP SD100B
 PRIQTY 200
 SECQTY 20
 ERASE NO
FREEPAGE 4
PCTFREE 20)

BUFFERPOOL BP0
LOCKSIZE PAGE
CLOSE NO
;

1

2

3

4

5

Repository Definition SQL Statement

 ASG-Manager Products Relational Technology Support: DB2

434

DB2-TBSPACE Syntax

 2.

2.

 2.

 2.

2.

2.

where:

tbspace is the name of a DB2-TBSPACE member

dbname is the name of a DB2-DATABASE member.

using-block is:

where:

catalog-name is a VSAM catalog of no more than 8 characters

� �� DB2-TBSPACE
AS tbspace IN dbnameLARGE

LOB

� �

using-block GBCACHE free-block
CHANGED
ALL

� �

PARTITION
NUMBER n GPBCACHE

CHANGED
ALLCOMPRESS

NO
YESstorage

���

NONE
SYSTEM

� �

BUFFERPOOL bpname CCSID ASCII
EBCDIC

LOG
NO
YES

� �

LOCKPART YES
NO

MAXROWS mr TRACKMOD
NO
YES

� �

LOCKSIZE ANY
TABLE
TABLESPACE

S
ROW
PAGE

LOCKMAX
integer
SYSTEM

0

LOB

� �

COMPRESS DSETPASS password
NO
YESCLOSE

YES
NO DSETPASS password

� �

SEGSIZE integer common clausesDSSIZE number n

� �

 .
;

�

� �

STOGROUP stogroup-name
space-specification

VCAT catalog

9 Repository Member Types

435

stogroup-name is the name of a DB2-STOGROUP member.

space-specification is:

where:

p is an integer in the range 3 to 4194304

s is an integer in the range 0 to 4194304.2510

free-block is:

where:

fn is an integer in the range 0 to 255

pn is an integer in the range 0 to 99.

n is an integer in the range 1 to 64

storage is:

where:

using-block is defined above

free-block is defined above

bpname is one of: BP0, BP1, BP2, BP3, BP4, BP5, BP6, BP7, BP8, BP9, BPl0, BP11,
BP12, BP13, BP14, BP15, BP16, BP17, BP18, BP19, BP20, BP21, BP22, BP23, BP24,
BP25, BP26, BP27, BP28, BP29, BP30, BP31, BP32, BP33, BP34, BP35, BP36, BP37,
BP38, BP39, BP40, BP41, BP42, BP43, BP44, BP45, BP46, BP47, BP48, BP49, BP32K,
BP32K1, BP32K2, BP32K3, BP32K4, BP32K5, BP32K6, BP32K7, BP32K8, BP32K9,
BP8K0, BP8K1, BP8K2, BP8K3, BP8K4, BP8K5, BP8K6, BP8K7, BP8K8, BP8K9,
BP16K0, BP16K1, BP16K2, BP16K3, BP16K4, BP16K5, BP16K6, BP16K7, BP16K8,
BP16K9.2.

� �

SECQTY s

PRIQTY p

ERASE

ERASE
YES

ERASE
YES

SECQTY s NO

YES
NO

NO

� �

PCTFREE pn

FREEPAGE fn
PCTFREE pn

� �

free-block

using-block
free-block

 ASG-Manager Products Relational Technology Support: DB2

436

password is a VSAM dataset password, of no more than 8 characters

mr is an integer in the range 1 to 255

integer is an integer, which must be a multiple of 4, in the range 4 to 64.

Refer to ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

DB2-TRIGGER
DB2-TRIGGER defines DB2 triggers. Create triggers in a schema and build trigger
packages at the current server in a DB2 environment.

Refer to "Reusing Existing Member Definitions" on page 464 for details on reusing all or
part of existing DB2-PROCEDURE member definitions using an AS clause.

DB2-TRIGGER Syntax

where:

alias is the name of a DB2-TRIGGER member.

user is the name of a DB2-USER member.

table is the name of a DB2-TABLE member that is the triggering table.

string is a maximum of 254 byte string specifying the referencing clause.

text is the trigger SQL action sequence.

� �� DB2-TRIGGER
AS alias

� �

CREATOR-OWNER user

� �

OPTION BEFORE

AFTER

� �ACTION

INSERT ON table
DELETE

UPDATE

� �

REF-OLD string
REF-NEW

� �

 .

�

;SQL text

9 Repository Member Types

437

DB2-USER
DB2-USER defines DB2 authorization IDs in the repository.

Refer to "DB2-USER Syntax" on page 441 for the syntax of DB2-USER member
definition.

In the DB2 environment all objects have an owner, who may also be the creator of the
object. DB2-USER members document the owner or creator of DB2 objects.

To define an authorization ID, enter:

DB2-USER

The member definition must begin with this member type identifier.

DB2-USER members are specified as the recipients of privileges in DB2-PRIVILEGE
members. DB2-USER members are also used to generate qualified names for
DB2-ALIAS, DB2-INDEX, DB2-TABLE, and DB2-VIEW members that have a
CREATOR-OWNER clause defined.

Note:
The SQLID keyword in DB2 commands allows you to override the user name specified
in the CREATOR-OWNER clause.

A DB2-USER member can be defined to represent a group of users, for example a project
team. The DB2-USER member representing the group ID has a CONTAINS clause
listing the DB2-USER members representing each member of the project team.

You can generate SQL CREATE SYNONYM statements from DB2-USER members if
you define synonyms in the SYNONYMS clause.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part of existing DB2-USER or SQL-USER member definitions using an AS clause.

Defining a Location
To define the location to which a user belongs, enter:

LOCATION location-name

where location-name is the name of a DB2-LOCATION member that represents a
local or remote location in a distributed network.

 ASG-Manager Products Relational Technology Support: DB2

438

In DB2-USER member definitions, the LOCATION clause is used to generate
location-qualified names for tables and views belonging to a particular user. The location
name defined in a DB2-USER member can be overridden by a LOCATION clause
defined in a DB2 command.

Defining a Group
To define a group ID, enter:

CONTAINS user-list

where user-list is the name of one or more DB2-USER or SQL-USER members,
separated by commas.

Each DB2-USER member represents one authorization ID, and together represent all the
users who can use the group ID.

DB2-USER members containing group IDs can be nested.

You can optionally define the owner name known by DB2, where it is different from the
member name.

To define the DB2 owner name, enter:

KNOWN-AS local-name

where local-name is a creator or owner name, of no more than eight characters,
recognized by DB2.

To prevent conflicting definitions, the local name specified in the KNOWN-AS clause
should be the same as any SQL ALIAS defined in the DB2-USER to which it refers. For
example, in the diagram below the member US-ALL contains two other DB2-USER
members, US-ACC10 and US-PER35.

US-ALL

DB2-USER

CONTAINS
 US-ACC10 KNOWN-AS ACCOUNTS
 US-PER35 KNOWN-AS STAFF

US-ACC10

DB2-USER

ALIAS SQL
 ACCOUNTS

US-PER35

 DB2-USER

ALIAS SQL
 PERSONNEL

different name generated

same name generated

9 Repository Member Types

439

When you generate SQL GRANT or REVOKE statements form US-ALL, the
KNOWN-AS clause gives owner names of ACCOUNTS and STAFF. However, when
you generate SQL GRANT or REVOKE statements directly from US-PER35, the SQL
ALIAS gives a different owner name of PERSONNEL.

If the DB2-USER member, named in the TO clause of a DB2-PRIVILEGE, is a group
ID, generated GRANT or REVOKE statements only name the group ID. If the group ID
is also defined in the DB2 environment, all the authorization IDs in the group inherit the
privileges granted to the group ID, and lose privileges when they are revoked.

However, if you use the USER-EXPANSION keywords available in the DB2 GRANT
and DB2 REVOKE commands, the group ID is expanded so that the privilege either
applies to the group ID and all the individual user IDs within it, or applies only to the
individual user IDs.

Refer to Chapter 8, "Commands," on page 175 for details of the DB2 GRANT and DB2
REVOKE commands.

Defining a User’s Synonyms for Aliases, Tables, Views
To define synonyms for the aliases, tables and views of a particular user, enter:

SYNONYMS synonym-name FOR object

where:

synonym-name is an alternative name, of no more than 18 characters, for the alias, table
or view.

object is the name of a DB2-ALIAS, DB2-TABLE, SQL-TABLE, DB2-VIEW or
SQL-VIEW member.

The DB2-synonym for the alias, table or view is taken directly from the name you specify
in this clause.

To define several synonyms, each synonym and the object it defines must be separated by
commas. For example:

SYNONYMS EMP-CODES FOR TA-EMP7C
, TAX-RECS for VW-TAX9N

 ASG-Manager Products Relational Technology Support: DB2

440

Example

1 The LOCATION clause sets up a relationship to the DB2-LOCATION member
AREA1. This is used to generate three-part qualified names for tables and views
owned by DB2U-DBA-PRODUCTION-DBA1.

2 The user’s SQL ALIAS, PRODDBA 1 documents the actual authorization ID in the
repository, but is not used to generate this SQL statement.

3 The CONTAINS clause documents, the DB2-USER members in the group ID. Local
names are defined for convenience and are the same as the SQL ALIASes in the
corresponding DB2-USER members.

4 The CREATE SYNONYM statements have to be executed in DB2 by the
authorization ID PRODDBA1 to reflect the creator of the synonyms. The first
CREATE SYNONYM statement is generated with CUST1 as the synonym name,
taken exactly as entered in the repository definition.

5 The two-part qualified table name is derived by taking the SQL ALIAS (PGP00) of
the DB2-USER member referred to in the CREATOR-OWNER clause of the
DB2-TABLE member CUSTOMER-INVOICE-TABLE. Neither of these two
members are shown here.

6 The second CREATE SYNONYM statement is generated in the same way as
described in 4 and 5 above.

ADD DB2U-PRODUCTION-DBA1;
DB2-USER
LOCATION AREA1
DESCRIPTION 'Group authorization for DBA team'
ALIAS SQL 'PRODBA1'

CONTAINS DB2U-SNR-DBA KNOWN-AS OSGDBA0
 ,DB2U-ASS-DBA KNOWN-AS OSGDBA1
 ,DB2U-SNR-PGMR KNOWN-AS PSGDBA4

SYNONYMS CUST1 FOR CUSTOMER-INVOICE-TABLE
 ,CUST0 FOR CUSTOMER-ORDER-TABLE

Repository Definition

1

2

3

4

5

6

CREATE SYNONYM CUST1 FOR PSGP00.CUST_INV_TB;
CREATE SYNONYM CUST0 FOR PSGP01.CUST_ORD_TB;

SQL Statement

4
5

6

;

9 Repository Member Types

441

DB2-USER Syntax

where:

user is the name of a DB2-USER or SQL-USER member.

location-name is the name of a DB2-LOCATION member.

user is as defined above.

local-name is a local name, of no more than 18 characters.

synonym-name is a synonym, of no more than 18 characters.

alias is the name of a DB2-ALIAS member.

table is the name of a DB2-TABLE or SQL-TABLE member.

view is the name of a DB2-VIEW or SQL-VIEW member.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

DB2-VIEW
DB2-VIEW defines DB2 views in the repository.

Refer to "DB2-VIEW Syntax" on page 462 for the syntax of the DB2-VIEW member
definition.

Views are of major interest to the end-user, since they provide access to specific data,
selected from one or more tables or views. Therefore, with DB2-TABLE, the DB2-VIEW
is one of the most used DB2 member types.

� �� DB2-USER
AS user LOCATION location-name

� �

CONTAINS user
KNOWN-AS local-name

���

� �

SYNONYMS synonym-name FOR

view
table
alias

���

� �

common clauses
� �

 .
;

�

 ASG-Manager Products Relational Technology Support: DB2

442

To define a DB2 view, enter:

DB2-VIEW

The member definition must begin with this member type identifier.

All other clauses available to define DB2-VIEW members are optional. However, for the
successful generation of SQL statements you must define specific clauses, as follows.

• For CREATE VIEW statements define the CREATOR-OWNER and COLUMNS
clauses

• For COMMENT ON statements define the CREATOR-OWNER and
DB2-COMMENT clauses

• For DECLARE VIEW statements define the CREATOR-OWNER and COLUMNS
clauses

• For DROP VIEW statements define the CREATOR-OWNER clause

• For LABEL ON statements define the CREATOR-OWNER and DB2-LABEL
clauses

To specify the ITEM and GROUP members that represent the columns of the view, see
the CONTAINS clause. As for DB2-TABLE members, it establishes relationships
between a DB2-VIEW and the ITEM and GROUP members that define the view’s
columns.

You can define columns:

• Individually, so that one ITEM or GROUP member defines one column

• In sets, so that the same ITEM or GROUP member defines several columns, with
identical attributes

• In cascades from a GROUP member, so that every ITEM nested in a GROUP
member defines one column

Sub-clauses within the CONTAINS clause enable you to define:

• The names of columns

• Calculated values to be held by columns

• That columns are GROUP BY columns

• The table that the columns are derived from

• Associated column comments and labels

The DB2-VIEW member type has specific clauses that enable you to define the tables or
views on which the view is based and to define a SELECT clause with optional FROM,
WHERE, and HAVING clauses.

9 Repository Member Types

443

DB2-VIEW repository definitions can be generated automatically if you use the
Workbench Design Area facilities (WBDA) for DB2 database design.

Refer to Chapter 3, "DB2 Database Design," on page 27 for details of generating
DB2-VIEW definitions from the WBDA.

Refer to Chapter 4, "Repository Definition," on page 91 for details of derivation of DB2
view names.

Reusing Existing Member Definitions
Refer to "Reusing Existing Member Definitions" on page 464 for details of reusing all or
part SQL-VIEW member definitions using an AS clause.

Defining an Owner
To define the owner of a view, enter:

CREATOR-OWNER user

where user is the name of a DB2-USER or SQL-USER member, and represents the
authorization ID of the owner of the view.

On encoding, the member specified in the CREATOR-OWNER clause is checked to
ensure that it is a DB2-USER or SQL-USER member.

This clause must be present for the successful generation of SQL statements, but it can be
overridden by an SQLID clause defined in a DB2 command.

Note:
The DB2-USER or SQL-USER named in the CREATOR-OWNER clause is used to
generate user-qualified names for view. If the DB2-USER has a LOCATION clause
defined, and the DB2 profile is set to three-part name generation, location and
user-qualified names are generated. The location-qualifier can be overridden by a
LOCATION clause defined in a DB2 command.

Defining a Comment on a View or Column
To define a comment for a view or column, enter:

DB2-COMMENT 'comment'

where comment is a string of no more than 254 characters, each line of which is within
delimiters.

When generated, lines of comment are concatenated to form a single string. To preserve
spaces between words, insert a space between the last character of each continuing line
and its delimiter.

 ASG-Manager Products Relational Technology Support: DB2

444

For example, the DB2-VIEW named MANAGER-NUMBER has an owner of
PERSONNEL and the following comment defined:

DB2-COMMENT 'This view contains the Manager number of every '
'manager in each department'

The following SQL statement can be generated:

COMMENT ON VIEW PERSONNEL.MANAGER_NUMBER IS 'This view cont
ains the Manager number of every manager in each department'

In this example the word contains has been split due to the margins set in the DB2 profile.

This clause must be present for the successful generation of SQL COMMENT ON
statements.

Note:

• For columns, the comment definition must follow the CONTAINS clause defining
that column or group of columns

• For views, the comment definition should precede the COLUMNS clause that
defines the columns of the view.

Defining a Label on a View or Column
To define a label for a view or column, enter:

DB2-LABEL 'label'

where label is a string of no more than 30 characters, within delimiters.

This clause must be present for the successful generation of SQL LABEL ON statements.

Note:

• For columns, the label definition must follow the CONTAINS clause defining that
column or group of columns

• For views, the label definition should precede the COLUMNS clause that defines
the columns of the view.

9 Repository Member Types

445

Specifying the Form Description that Defines the Data Type of Columns
To specify which form description, defined in an ITEM or GROUP member, is used to
generate the data type of the columns in the view, enter one of the following form
keywords:

ENTERED-AS
HELD-AS
REPORTED-AS
DEFAULTED-AS

The form keyword that you define applies to all the ITEMs and GROUPs named in the
CONTAINS clause that follows.

For example, a DB2-VIEW member containing the following lines:

ENTERED-AS
CONTAINS ITEM1, ITEM2

refers to the two ITEM members:

The ENTERED-AS form keyword in the DB2-VIEW definition specifies that the
ENTERED-AS form description from both ITEMs is used to define the data type of
columns. Therefore the column generated from ITEMI has a data type of CHAR, and the
column generated from ITEM2 has a data type of DECIMAL.

If you do not specify a form keyword then the DEFAULTED-AS form description is
used. Where the ITEM or GROUP has no DEFAULTED-AS form description defined,
then the Manager Products defaults apply. For further information refer to the
ASG-Manager Products Source Language Generation guide.

Refer to Chapter 4, "Repository Definition," on page 91 for further details of
documenting the columns of views and generating data types.

Refer to ASG-Manager Products Dictionary/Repository User’s Guide for details of
ITEM and GROUP member definitions.

Specifying the ITEMs or GROUPs that Define Columns
To specify the ITEM or GROUP members that define columns, enter:

CONTAINS member-list

ITEM1

ITEM
HELD-AS BINARY 10
ENTERED-AS CHAR 5
REPORTED-AS FLOAT 9

ITEM2

ITEM
ENTERED-AS DECIMAL 4.2
DEFAULTED-AS FLOAT 7

 ASG-Manager Products Relational Technology Support: DB2

446

where member-list is the name of one or more ITEM or GROUP members, separated
by commas, each representing a single column.

On encoding, the members specified in the CONTANS clause are checked to ensure that
they are either GROUPs or ITEMs. Duplicate column names are not permitted by DB2
therefore column names are checked on generation to ensure that no duplicates are
present.

Each ITEM can define up to 15 form descriptions. To define which of the form
descriptions you want to use, enter:

CONTAINS item version

where:

item is the name of an item member

version is an integer in the range 1 to 15, and defines the form description version that
you want to use.

For example:

HELD-AS CONTAINS STOCK-LIST 3

defines that the third HELD-AS form description the ITEM member STOCK-LIST is
used as the column data type.

When you use the SIZE and RECALCULATE commands, the data type of columns is
used to calculate the size of a table.

To define a set of columns with identical attributes, using the same ITEM or GROUP
member, enter:

CONTAINS (integer) member

where:

integer is the number of columns to be derived from the member, within brackets

member is the name of an ITEM or GROUP member.

To resolve duplicated names on generation of an SQL statement, column names are
automatically suffixed by an underscore and a number, the first by _l, the second by _2
and so on.

For example:

CONTAINS (4) STOCK-LIST

9 Repository Member Types

447

generates the four columns STOCK_LIST_1, STOCK_LIST 2, STOCK_LIST_3, and
STOCK_LIST_4. The attributes, such as data type, are the same for each of the four
columns.

When a column is derived from a GROUP containing several ITEMs, the data type of the
column is taken as CHAR. The maximum number of characters allowed in the column is
calculated from the combined field lengths of the form descriptions defined in each
ITEM. However, where a DB2 command applied to the DB2-VIEW specifies the
EXPAND keyword, then each item within a GROUP generates a separate column.

Naming Columns
You can explicitly name a column if you do not want its name to be derived from the
ITEM or GROUP name or alias.

To define the name of a column or view, enter:

KNOWN-AS local-name

where local-name is a string of no more than 18 characters.

For example:

CONTAINS IT-INCOMING KNOWN-AS STOCK-IN

defines that the ITEM member IT-INCOMING generates a view column called
STOCK-IN.

If you use the KNOWN-AS clause to name a column set, the local name is duplicated for
each column. To resolve duplicated names on generation of an SQL statement, column
names are automatically suffixed by an underscore and a number, the first by _1, the
second by _2, and so on.

For example:

CONTAINS (3) IT-Q1 KNOWN-AS MONH

generates three columns from the ITEM member IT-Q1, named MONTH_1, MONTH_2,
and MONTH_3.

To define the name of a column in a view, if it is different from the column name in the
table, use the COLUMN-NAME clause.

Refer to Chapter 4, "Repository Definition," on page 91 for further details of the
generation of column names.

 ASG-Manager Products Relational Technology Support: DB2

448

Specifying that Each ITEM contained in a GROUP Defines One Column
If you want each of the ITEMs contained in a GROUP to represent a column, enter:

CONTAINS group EXPAND

where group is the name of a GROUP member.

For example:

CONTAINS AREA-DEPOT EXPAND

generates four columns because the GROUP, AREA-DEPOT, contains four ITEMS.

However, if the NO-EXPAND keyword is specified in a DB2 command, the EXPAND
keyword is overridden and the GROUP generates a single column.

Note:
You cannot define a KNOWN-AS clause with expanded GROUPs. The generation of
SQL CREATE statements is unsuccessful if a DB2 command including the EXPAND
keyword is applied to a DB2-VIEW whose columns are named by the KNOWN-AS
clause. This is because the local name is duplicated for every column generated from the
GROUP member.

If the GROUP is nested, that is it contains other GROUPs, each of these is also expanded
so that all ITEMs are used to define columns. Nesting can continue to any depth and is
only limited by the amount of memory available.

ELSE clauses defined in expanded GROUP members generate a column with a CHAR or
VARCHAR data type with a field length equal to the longest overlaid field.

Where a set of columns is derived form an expanded GROUP, each contained ITEM or
GROUP is repeated the number of times specified. If a GROUP contains an ITEM with
its own repeating factor, the ITEM is also repeated the number of times specified.

For example, a DB2-VIEW defined as:

CONTAINS (2) AREA-DEPOT EXPAND

where the GROUP, AREA-DEPOT, contains:

(2) WAREHSE-A
 WAREHSE-B
(3) LOCALSTK-A

9 Repository Member Types

449

generates four columns from WAREHSE-A, two columns from WAREHSE-B, and six
columns from LOCALSTK-A, and names them as follows:

WAREHSE_A_1
WAREHSE_A_2
WAREHSE_B_1
LOCALSTK_A_1
LOCALSTK_A_2
LOCAKSTK_A_3

WAREHSE_A_3
WAREHSE_A_4
WAREHSE_B_2
LOCALSTK_A_4
LOCALSTK_A_5
LOCALSTK_A_6

Expanded GROUPs and Host Language Data Structures
The member GROUP I contains nested GROUPs, shown in the following diagram:

When you generate SQL statements or SQL host language data structures, intermediate
levels in the data structure, that is GROUP2 and GROUP3, are removed in order to
generate the following flat, two-level structure:

02 ITEM1
02 ITEM3
02 ITEM5
02 ITEM6
02 GROUP4
02 ITEM4
02 ITEM2

Note:
GROUP4 is treated as an elementary field as it has no lower level. Its data type defaults to
CHAR(l).

Intermediate levels, in the above example GROUP2 and GROUP3, can be shown as
comments.

GROUP1 ITEM1

GROUP2

ITEM2

ITEM3
GROUP3

ITEM4

ITEM5
ITEM6
GROUP4

 ASG-Manager Products Relational Technology Support: DB2

450

When you generate host language data structures in working storage, for example for
PL/I, intermediate levels are expanded to give the following nested structure:

02 ITEM1,
 02 GROUP2,
 03 ITEM3
 03 GROUP3
 04 ITEM5
 04 ITEM6
 04 GROUP4
 03 ITEM4
02 ITEM2

If you consider the original nested structure as a tree and field that do not have lower
levels as leaves, then the root of the tree is taken as the first level and only the leaves of
the tree are taken as the second level.

There is one exception to this rule: When COBOL data structures are generated,
VARCHAR and VARGRAPHIC characters are not treated in this way, since they have a
two-level structure anyway.

Refer to the PRODUCE command for details of generating host language data structures.

Defining Column Attributes
You can define additional attributes for a view’s column(s) using sub-clauses within the
CONTAINS clause. If the CONTAINS clause defines a column set or an expanded
GROUP, the generated column attributes apply to all the columns in the set.

To define the name of a column in a view, if it is different from the column name in the
table, enter:

COLUMN-NAME name

where name is a name of no more than 18 characters. If you do not define a name for the
column, the usual rules for generating column names apply.

If you define a COLUMN-NAME clause for a column set or expanded GROUP, the
generated column names are identical, and the statement generation will fail.

To define a calculated value that is held in a column, enter:

EXPRESSION 'string'

where string is an SQL expression, of no more than 255 characters within delimiters,
and contains the expression used to calculate the values contained in the column.

9 Repository Member Types

451

When you define an EXPRESSION clause you can generate a column that holds a value
calculated by an operation performed on none, one or more of the other columns in the
view.

You may rename result columns in a CONTAINS clause by specifying:

AS name

The ITEM that defines the column should generate a data type compatible with the
calculated expression, for SQL DECLARE or PRODUCE statements to be meaningful.

To define that a column is part of a GROUP BY clause for the view, enter:

GROUP-BY

The keyword has the same meaning as in DB2.

Ambiguity may arise if different columns from different tables or views have the same
name. To define a correlation name for a column, so that it can be correlated with the
table named in the FROM clause, enter:

TABLE correlation-name

where correlation-name is an identifier, of no more than 18 characters, for the table or
view. The same name is repeated in the CORRELATION-NAME clause, where it is
associated with the member name of the DB2-TABLE.

For example:

CONTAINS
 IT-PERS-13 KNOWN-AS CODE-NAME TABLE PERSON
, IT-PROJ-58 KNOWN-AS CODE-NAME TABLE PROJECT
FROM
 TA-EMP-DETAILS CORRELATION-NAME PERSON
, TA-PROJ-DATA CORRELATION-NAME PROJECT

defines that:

• The ITEM member IT-PERS-13 generates a column called CODE-NAME

• The ITEM member IT-PROJ-58 generates a column called CODE-NAME

• Columns with a correlation-name of PERSON in the TABLE clause are derived
from the DB2-TABLE TA-EMP-DETAILS

• Columns with the correlation name of PROJECT are derived from the
DB2-TABLE TA-PROJ-DATA.

 ASG-Manager Products Relational Technology Support: DB2

452

To define that a column is to contain a comment enter:

DB2-COMMENT 'comment'

To define that a column is to contain a label enter:

DB2-LABEL 'label'

Refer to "Defining a Comment on a View or Column" on page 443 and "Defining a Label
on a View or Column" on page 444 for details of how to define comments and labels.

Defining that Updates are Checked
To define that DB2-checks any updates to a view against the view definition, enter:

WITH-CHECK-OPTION

To define that DB2 checks any updates to a view against the view definition and all
underlying views (regardless of whether underlying views are defined with a check
option), enter:

WITH-CHECK-OPTION CASCADED

To define that DB2 checks any updates to a view against the view definition and all
underlying views that are defined with a check option, enter:

WITH-CHECK-OPTION LOCAL

Defining the View Subselect Type
You can define the following clauses in a DB2-VIEW from which subselect clauses in
SQL CREATE VIEW statements are generated.

To define that duplicate rows in a view are all preserved, enter:

SELECT ALL

To define that duplicates are eliminated, enter:

SELECT DISTINCT

If you do not define a SELECT clause, the SELECT attribute is automatically generated,
and the DB2 default applies.

Defining the Tables of a View
To define the tables or view upon which a view is based, enter:

FROM member

9 Repository Member Types

453

where member is the name of a DB2-TABLE, SQL-TABLE, DB2-VIEW, or SQL-VIEW
member.

For the successful generation of SQL CREATE statements the members named in the
FROM clause must include a valid CREATOR-OWNER clause.

To define a correlation name for a table or view that columns are derived from, enter:

FROM member CORRELATION-NAME correlation-name

where:

member is the name of a DB2-TABLE, SQL-TABLE, DB2-VIEW, or SQL-VIEW
member.

correlation-name is an identifier, of no more than 18 characters, for the table or view.
The same name is repeated in the TABLE clause.

Defining the Complex Subselect and Join Syntax
FROM-TEXT specifies the SELECT statement that is to be used in the generated SQL.
Refer to IBM documentation for the syntax of this clause. The FROM member list is
generated during import by extracting the table/view name from the SELECT statement.

If there is no FROM-TEXT clause present in the VIEW, DB2 CREATE will generate the
FROM statement from the FROM list.

Note:
FROM-TEXT may specified optionally for any view, but will only be generated during
IMPORT for a view that includes subsequent subselect clauses within the scope of the
primary select clause or for views that include any explicit join specification.

Note:
The validity of the search conditions is not checked when a DB2-VIEW member is
encoded, or when an SQL statement is generated.

Defining the WHERE Selection Criteria
To define a "where" subclause for the subselect, enter:

WHERE 'string'

where string is a valid SQL search condition as defined in the IBM documentation.

Note:
The validity of the search conditions is not checked when a DB2-VIEW member is
encoded, or when an SQL statement is generated.

 ASG-Manager Products Relational Technology Support: DB2

454

Defining the HAVING Selection Criteria
To define a "having" subclause for the subselect, enter:

HAVING 'string'

where string is a valid SQL search condition as defined in the IBM documentation.

The validity of the search conditions is not checked when a DB2-VIEW member is
encoded, or when an SQL statement is generated.

Example of a DB2-VIEW Definition Containing a Join and Generated SQL CREATE
Statement

In the following example a view is defined with columns of employees’ names, payroll
numbers, departments, and annual salaries. The view must be defined as the join of the
tables EMP-TABLE (correlation name E), which contains the columns:

EMP-NAMESOC-SEC-NODEPT-NOMONTHLY-SAL

and DEPT-TABLE (correlation-name D), which contains the columns:

DEPT-NODEPT-NAME

The view has four columns:

NAMEderived from EMP-NANE in EMP-TABLE
PAYROLL-NOderived from SOC-SEC-NO in EMP-TABLE
DEPARTMENTderived from DEPT-NAME in DEPT-TABLE
ANNUAL-SALderived by multiplying column MONTHLY-SAL in
 EMP-TABLE by 12.

The join column is DEPT-NO, which is present in both tables. That is, to obtain the
department name the employee table must be joined with the department table by
matching the department numbers.

9 Repository Member Types

455

1 The derived name for the view is the SQL ALIAS of the DB2-VIEW member,
qualified by the SQL ALIAS defined in the DB2-USER member which represents
the owner’s DB2 Authorization ID.

ADD AA-USER1-PAYROLL
DB2-VIEW

CREATOR-OWNER AA-USER1

ALIAS SQL 'DEPT-HOURS'

HELD-AS CONTAINS

EMP-NAME TABLE E COLUMN-NAME NAME
,SOC-SEC-NO TABLE E
 KNOWN-AS EMP-NO TABLE E COLUMN-NAME PAYROLL-NO
,DEPT-NAME TABLE D COLUMN-NAME DEPARTMENT
,DEPT-NO TABLE D COLUMN-NAME DEPT-NUM
,MONTHLY-SAL TABLE E COLUMN-NAME ANNUAL-SAL
EXPRESSION "12*MONTHLY_SAL"

SELECT DISTINCT

FROM EMP-TABLE CORRELATION-NAME E
 ,DEPT-TABLE CORRELATION-NAME D

WHERE "E.DEPT_NO = D.DEPT_NO"

;

Repository Definition

1

2

3

4

5

6

7

CREATE VIEW

A.A.DEPT_HOURS

 (NAME
,PAYROLL_NO
,DEPARTMENT
,DEPT_NUM
,ANNUAL_SAL)

AS SELECT DISTINCT

 E.EMP_NAME
,E.EMP_NO
,D.DEPT_NAME
,D.DEPT_NO
,12*MONTHLY_SAL

FROM EMP-TABLE
 ,DEPT_TABLE CORR D

WHERE E.DEPT_NO = D.DEPT_NO

;

SQL Statement

1 & 2

4

5

3

6

7

 ASG-Manager Products Relational Technology Support: DB2

456

2 same as step one.

3 The columns to be selected are qualified by the correlation name of the tables to
which they belong.

4 The column names in the view are taken directly from the COLUMN-NAME clause
in the member definition.

5 The SELECT option is taken directly from the member definition.

6 The tables form which the columns are selected and their correlation-names are
taken directly from the FROM clause in the member definition.

7 The WHERE search condition is taken directly from the WHERE clause.

Example of a DB2-VIEW Definition Containing a GROUP BY, and Generated SQL
CREATE Statement for a View Containing a GROUP BY

In the following example a view is defined with columns of department number,
department name and the total number of employees in the department, for department
numbers in the range 100 to 899. The information is derived from a single table:
DEPT-TABLE, which contains the columns:

DEPT-NODEPT-NAMEEMP-NO

The view has three columns:

NO derived from DEPT-NO
DEPARTMENTderived from DEPT-NAME
TOTAL-STAFFderived by counting the number of rows for each

department.

The view must be defined using GROUP-BY and HAVING clauses, so that the column
function COUNT(*) can be used to add up the total number of rows for each department.

9 Repository Member Types

457

1 The derived name for the view is the SQL ALIAS of the DB2-VIEW member,
qualified by the SQL ALIAS defined in the DB2-USER member which represents
the owner’s DB2 authorization ID.

2 Same as above.

ADD AA-USER1-DEPT_STATS;
DB2-VIEW

CREATOR-OWNER AA-USER1

ALIAS SQL 'DEPT_STATS'

HELD-AS CONTAINS

 DEPT-NO GROUP-BY COLUMN-NAME NO3
,DEPT-NAME GROUP-BY COLUMN-NAME DEPARTMENT
,IT-INTEGER TABLE D COLUMN-NAME TOTAL-STAFF
EXPRESSION "COUNT(*)"

FROM DEPT-TABLE

HAVING "DEPT-NO BETWEEN 100 AND 899"
;

Repository Definition

1

2

6

3

4

5

CREATE VIEW

AA.DEPT_STATS

 (NO
,DEPARTMENT
,TOTAL_STAFF)

AS SELECT

 DEPT_NO
,DEPT_NAME
,COUNT(*)

FROM DEPT_TABLE

GROUP BY DEPT_NO
 ,DEPT_NAME

HAVING DEPT_NO BETWEEN 100 AND 899

;

1 & 2

4

3

5

6

3

SQL Statement

 ASG-Manager Products Relational Technology Support: DB2

458

3 The columns to be selected are taken directly from the CONTAINS clause. The third
column, which contains the result of the operation carried out on the DEPT-NO and
EMP-NO columns, is defined as an ITEM, IT-INTEGER.

4 The names which the columns in the view are to have are taken directly from the
COLUMN-NAME clauses in the member definition.

5 The table from which the columns are drawn is taken directly from the FROM clause
in the member definition.

6 The HAVING search condition is taken directly from the HAVING clause in the
member definition.

Example of a DB2-VIEW Definition Containing a Join and a GROUP BY, and Generated
SQL Statement

In the following example a view is defined with columns containing department number,
department name, and total hours worked on the various projects for the department,
provided that total exceeds 100 hours. The view must be defined as the join of the tables
DEPT-TABLE (correlation-name D), which contains the columns:

DEPT-NO
DEPT-NAME
PROJ-NO

and PROJ-TABLE (correlation-name P), which contains the columns:

PROJ-NO PROJ-NAMETOTAL-HOURS

The view has three columns:

DEPT-NOderived from DEPT-NO in DEPT-TABLE
DEPARTMENTderived from DEPT-NAME, in DEPT-TABLE
TOTAL HOURSderived from the sum of both PROJ-NO columns, which

is the join column of DEPT-TABLE and PROJ-TABLE.

The join column is PROJ-NO, which is present in both tables. The view’s subselect must
also have:

• A GROUP-BY keyword to sum the total hours in one department

• A HAVING clause, to exclude all the groups that do not have total hours exceeding
100 hours.

The ITEM member IT-INTEGER acts as a "place marker" in the CONTAINS clause and
ensures that the correct data type is generated for host structures.

9 Repository Member Types

459

ADD AA-USER1-DEPT_HOURS;
DB2-VIEW

CREATOR-OWNER AA-USER1

ALIAS SQL 'DEPT_STATS'

HELD-AS CONTAINS

 DEPT-NO GROUP-BY TABLE D

,DEPT-NAME GROUP-BY
,IT-INTEGER

EXPRESSION "SUM(P.TOTAL_HOURS)"

FROM DEPT-TABLE D

WHERE "D.PROJ_NO = P.PROJ_NO

;

Repository Definition

1

2

6

3

4

5

COLUMN-NAME DEPARTMENT
COLUMN-NAME TOTAL-HOUR

 ,PROJ-TABLE P

HAVING "SUM(P.TOTAL_HOURS) > 100" 7

CREATE VIEW

AA.DEPT_STATS

 (DEPT-NO
,DEPARTMENT
,TOTAL_HOURS)

AS SELECT

 D.DEPT_NO
,DEPT_NAME
,SUM(P.TOTAL_HOURS)

FROM DEPT_TABLE

GROUP BY DEPT_NO
 ,DEPT_NAME

HAVING SUM(P.TOTAL_HOURS) > 100

;

1 & 2

4

3

5

7

3

SQL Statement

,PROJ-TABLE P

WHERE D.PROJ_NO = P.PROJ_NO 6

 ASG-Manager Products Relational Technology Support: DB2

460

1 The derived name for the view is the SQL ALIAS of the DB2-VIEW member,
qualified by the SQL ALIAS defined in the DB2-USER member which represents
the owner’s DB2 authorization ID.

2 Same as above.

3 The columns to be selected are taken directly from the CONTAINS clause. The third
column, which contains the result of the operation carried out on the
TOTAL-HOURS columns of DEPT-TABLE and PROJ-TABLE is defined as an
ITEM, IT-INTEGER.

4 The names which the columns in the view are to have are taken directly from the
COLUMN-NAME clause in the data definition, or, in the case of the first column,
directly from the repository member name of the ITEM which represents the
column.

5 The table from which the columns are drawn is taken directly from the FROM clause
in the member definition.

6 The WHERE search condition is generated directly from the WHERE clause.

7 The HAVING search condition is generated directly from the HAVING clause.

Example of a DB2-VIEW Definition Containing FROM-TEXT and Generated SQL CREATE
Statement for a View Containing FROM-TEXT

DB2-VIEW

CREATOR-OWNER US-MSE02

ALIAS SQL 'MSTEST'

HELD-AS CONTAINS

 TT VAN

,IT-CHAR-EXP
 KNOWN-AS CHAR-EXP
EXPRESSION "VACCY"

SELECT ALL

FROM TB-MSE02-TAB2 CORRELATION-NAME TABX

;

Repository Definition

1

2

6

3

4

5

COLUMN-NAME VANC

COLUMN-NAME VACANCYC

FROM-TEXT "SELECT VAN, VACANCY AS VACCY FROM TAB3"

7

 KNOWN-AS VAN

 ,TB-MSE02-TAB3 CORRELATION-NAME A

 "WHERE CODE < 200) AS A LEFT OUTER JOIN TAB2 AS TABX"
 "ON COMPANY = VACCY"

9 Repository Member Types

461

1 The derived name for the view is the SQL ALIAS of the DB2-VIEW member,
qualified by the SQL ALIAS defined in the DB2-USER member which represents
the owner’s DB2 Authorization ID.

2 Same as above.

3 The columns to be selected are qualified by the correlation name of the tables to
which they belong.

4 The column names in the view are taken directly from the COLUMN-NAME clause
in the member definition.

5 The SELECT option is taken directly from the member definition.

6 The FROM clause in the member definition is generated during import by stripping
the table names from the SELECT statement following the DB2 FROM statement.
If you are creating your own member definition, the FROM clause should list the
table names only and the FROM-TEXT clause should detail the SUB-SELECT
statement (if present).

7 The generated FROM statement is taken directly from the FROM-TEXT clause in
the member definition.

CREATE VIEW

MSE02.FROMTEXT

 (VANC
,VACANCYC)

AS SELECT ALL

VAN
,VACANCYC

FROM (SELECT VAN, VACANCY AS VACCY FROM TAB3

;

1 & 2

SQL Statement

3

5

3

7

FROM (SELECT VAN, VACANCY AS VACCY FROM TAB3
 WHERE CODE < 200) AS A LEFT OUTER JOIN TAB2 AS TABX
 ON COMPANY = VACCY

 ASG-Manager Products Relational Technology Support: DB2

462

DB2-VIEW Syntax

2510

where:2510

join-clause is:

The JOIN clause is specified on the second FROM element. For example,

FROM ...
 ; table-a
 ; table-b JOIN 'INNER'...
 ...

where:

view is the name of a DB2-VIEW member.

user is the name of a DB2-USER member.

� �� DB2-VIEW
AS view CREATOR-OWNER user

� �

DB2-COMMENT 'comment' DB2-LABEL 'label'

� �

ENTERED-AS
HELD-AS
REPORTED-AS
DEFAULTED-AS

CONTAINS columns
��������

� �

WITH-CHECK-OPTION SELECT ALL
DISTINCTCASCADED

LOCAL

� �

FROM
table CORR correlation-name
view

���

dms

join-clause

� �

<<<<<<<<<<<<<<<<
JOIN 'INNER'

'OUTER'
'LEFT OUTER'
'RIGHT OUTER'
'FULL OUTER'

JOIN-ON 'string'

� �

FROM-TEXT WHERE 'string''text' HAVING 'string'
� �

common clauses
� �

 .
;

�

9 Repository Member Types

463

correlation-name is a string of 1 to 18 characters.

text is a string of up to 32767 delimited character strings, each string having a maximum
of 246 characters.

comment is a character string of no more than 254 characters, within delimiters.

label is a character string of no more than 30 characters, within delimiters.

columns is:

2510

where:

(n) is the number of columns in a column set.

item is the name of an ITEM member.

v is an integer in the range l to 15.

group is the name of a GROUP member.

local-name is the name of the column in the table and consists of no more than 18
characters.

name is the name of the column in the view and consists of no more than 18 characters.

expression is an expression of no more than 255 characters, within delimiters.

column-name is an undelimited name of 1 to18 characters.

correlation is the name of a correlation and consists of no more than 18 characters.

comment is defined above.

label is defined above.

table is the name of a DB2-TABLE member.

� �
(n)

item
v KNOWN-AS local-name

group
group EXPAND

� �

COLUMN-NAME name EXPRESSION 'expression'
AS column-name

<<<<<<<<<<<<<<<<<<

� �

GROUP-BY TABLE correlation

� �

DB2-COMMENT 'comment' DB2-LABEL 'label'

 ASG-Manager Products Relational Technology Support: DB2

464

view is defined above.

correlation is defined above.

string is a valid SQL search condition.

string is as defined above.

Refer to ASG-Manager Products Dictionary/Repository User’s Guide for details of
common clauses.

Reusing Existing Member Definitions
You may wish to generate SQL statements for different DB2 objects that are similar to
one another, or are even duplicates. Rather than fully defining several members with the
same clauses, you can fully define one member and reuse its clauses.

To reuse clauses already defined in another repository member, enter:

As member

where member is the name of a repository member.

Members named in the AS clause usually have the same member type as the member you
are defining. However, if you have SQL/DS support, the following member types can
also refer to corresponding SQL members:

• DB2-INDEX

• DB2-PRIVILEGE

• DB2-TABLE

• DB2-USER

• DB2-VIEW.

This enables you to:

• Make use of existing member definitions

• Avoid rekeying data

• Save space in the repository

• Share member definitions across relational databases.

During generation of SQL statements any required clauses that are undefined in the
member being generated are taken from the member named in the AS clause.

9 Repository Member Types

465

For example, if different development teams require versions of the same table, you can
fully define one member, DEV1-EMP-TABLE, then use the AS clause in the second
member, DEV2-EMP-TABLE.

The generated tables both belong to TBSPACE1 and both have the same columns.

When you generate an SQL CREATE statement for DEV2-EMP-TABLE, the
CREATOR-OWNER clause in DEV1-EMP-TABLE is not extracted via the AS clause
because DEV-EMP-TABLE has its own CREATOR-OWNER clause defined.

DB2-TABLE
CREATOR-OWNER TEAM1
IN TBSPACE1
COLUMNS REPORTED-AS CONTAINS
 IT1 KNOWN-AS EMP-NO
 NOT NULL PRIMARY KEY
 ,IT2 KNOWN-AS EMP-NAME
 NOT NULL
 ,IT3 KNOWN-AS JOB-TITLE
 WITH DEFAULT

DB2-TABLE
CREATOR-OWNER TEAM2
AS DEV-1-EMP-TABLE

DEV1-EMP-TABLE DEV2-EMP-TABLE

 ASG-Manager Products Relational Technology Support: DB2

466

467

Appendix A
Name Reduction Process

When you:

• Generate Database Definition Language (DDL) statements from repository
members

• Generate host language data structures in COBOL, Assembler, or PL/I from
repository members

• Populate the repository with members generated from the Workbench Design Area
(WBDA)

the name reduction process is invoked automatically to ensure that the length of the
names generated for the relevant external environment are no longer than the maximum
acceptable to that environment.

The principle of the name reduction process is to recognize constituent parts of names
and to shorten each part, wherever possible. As a result, duplicate names are less likely to
arise than if a simple process of truncation were applied to the complete name, and as
much as possible of the meanings of the names is preserved.

The Procedures Language provides the REDUCE function so you can define the
parameters for name reduction in other circumstances.

Description
The name reduction process first checks whether the name is a single word (that is, one
character string without separator characters). If such a single-word name is longer than
permitted by the external environment, the first of the following processes that gives the
desired result occurs:

• Single-word names with 15 or less characters are truncated from the right, until the
permitted maximum number of characters is achieved

• Single-word names with more than 15 characters have characters removed from the
middle, until the permitted number of characters is achieved.

ASG-Manager Products Relational Technology Support: DB2

468

For names that consist of two or more constituent parts, separated by recognized
separator characters (such as hyphens or underscores), the name reduction process is as
follows:

• If necessary, the longest constituent part of the name is truncated from the right,
back to the next character that is not a vowel

• If, after this, the name is still longer than permitted, then the next longest
constituent part of the name is truncated from the end, in the same way. This
process continues until the name length, including the separator character(s), is
within the permitted maximum. In this process, no constituent part of the name is
truncated to less than two characters.

If the number of constituent parts of a name is greater than the optimum number that
would leave at least two characters in each part, separated by recognized separators, then
the first of the following processes that gives the desired result occurs:

• The constituent parts of the name are truncated from the right, back to the next
character which is not a vowel, as above

• The separators are removed.

If a name cannot be reduced to its permitted maximum length by any of the processes
described above, then the required number of characters (including separator characters)
are removed from the middle of the name.

Example
A DB2 table, defined in the repository as a DB2-TABLE member, may have defined in it
two columns called:

SPECIAL-ORDER-DATE-MONTH

and

SPECIAL-ORDER-DATE-YEAR

Simple truncation to 18 characters would produce, in the external environment

SPECIAL_ORDER_DATE

and

SPECIAL-ORDER-DATE

The two columns have identical names, which is illegal.

Appendix A - Name Reduction Process

469

However, the name reduction process reduces the constituent parts of the first name:

SPECIAL
 ORDER
 MONTH

in turn, to achieve:

SPEC_ORD_DATE_MONT

and reduces the constituent parts of the second name:

SPECIAL
 ORDER
 DATE
 YEAR

in turn, to achieve:

SPEC-ORD-DATE-YEAR

The result is two unique names. The length of each is within the permitted maximum for
DB2 column names (18 characters), and the meanings of the names have been preserved.

ASG-Manager Products Relational Technology Support: DB2

470

471

Appendix B
Documenting Other Relational Databases

Manager Products enable you to document relational databases such as ORACLE,
SYSBASE, and INFORMIX.You can define your own member types, to represent
objects in a relational database, by tailoring the repository information model. For
example, you can define a new set of member types to document an ORACLE
environment, based on the DB2 member types.2.

Refer to the ASG-Manager Products User Defined Syntax or ASG-MethodManager
Administration manual for further details of tailoring the repository information model.

The objects common to all relational databases are tables. The DB2-TABLE member
type clauses can document most of the attributes of relational tables. Some, for example
OS/2 and OS/400 tables, can be documented using only a subset of. the clauses available.
Others, for example ORACLE tables, may need additional clauses to enable you to
document all their attributes. However, when you tailor the repository information model,
to define a member type based on the DB2-TABLE, you cannot define additional clauses
at the column level. Therefore, to enable you to document attributes and relationships for
columns within a table, the DB2-TABLE member type has the following clauses that you
can use.

The clauses to define additional column attributes are:

COL-RELl member COL-ATT1 'string'
COL-REL2 member COL-ATT2 'string'
COL-REL3 member COL-ATT3 'string'

where:

member is the name of a repository member

string is a string of up to 254 characters, within delimiters.

Refer to Chapter 9, "Repository Member Types," on page 331 for the documentation of
the DB2-TABLE member type and its generic column attributes.

There are several ways to document your relational environments in the repository:

ASG-Manager Products Relational Technology Support: DB2

472

1 Fully define several members of different types, each representing a different
relational table, and containing the same or similar data. For example:

2 Fully define one generic member that contains data common to all the tables. Define
data specific to each table, in members of different types, and refer from these to the
generic member using an AS clause. For example:

DB2-TABLE

 IN DB2-TS1

CREATOR-OWNER DJB
COLUMN HELD-AS
 CONTAINS IT-COL1
 FOR-BIT-DATA
 PRIMARY-KEY
FIELDPROC FP12
CONSTRAINT
 NAMED CNST1
FOREIGN-KEY
 IT-COL1
 KNOWN-AS CUST-NO
;

ORACLE-TABLE

 TABLESPACE OR-TS1

 CREATOR-OWNER DJB
 COLUMN HELD-AS
 CONTAINS IT-COL1
 FOR-BIT-DATA
 PRIMARY-KEY
FIELDPROC FP12
CONSTRAINT
 NAMED CNST1
FOREIGN-KEY
 IT-COL1
 KNOWN-AS CUST-NO

PCTFREE 20
MAXTRANS 200
;DB2 member definition

 DB2-EG1

User defined ORACLE
 member definition
 ORA-EG1

GENERIC-TABLE

 CREATOR-OWNER DJB
 COLUMN HELD-AS
 CONTAINS IT-COL1
 FOR-BIT-DATA
 PRIMARY-KEY
 FIELDPROC FP12
 CONSTRAINT
 NAMED CNST1
 FOREIGN-KEY
 IT-COL1
 KNOWN-AS CUST-NO
;

GENERIC member definition
 GEN-EG2

DB2-TABLE

 IN DB2-TS1

 AS GEN-EG2
;

ORACLE-TABLE

 TABLESPACE OR-TS1

 AS GEN-EG2
;

 PCTFREE 20
 MAXTRANS 200

User defined ORACLE
 member definition
 ORA-EG2

DB2 member definition
 DB2-EG2

Appendix B - Documenting Other Relational Databases

473

3 Where one of the members is a DB2-TABLE, fully define this as the generic
member, and refer from other members representing relational tables using an AS
clause. For example:

Once you have modeled your database on the repository you may want to update the
database using statements generated from repository definitions. If the database uses
Structured Query Language (SQL), you can tailor the export to DB2 functions to generate
SQL statements that you can then apply to the database.

Refer to Chapter 5, "Export to DB2," on page 105 for details of tailoring export to DB2
functions.

Your repository documentation may become out of step and out of date compared to the
database, unless you ensure careful maintenance of the repository definitions.

Refer to the ASG-DictionaryManager User’s Guide for details of importing from other
environments.

To ease the parallel use of other database systems the syntax of the DB2 basic command
has been enhanced to:2.

2.

2.

2.

2.

DB2-TABLE

 IN DB2-TS1

 CREATOR-OWNER DJB
 COLUMN HELD-AS
 CONTAINS IT-COL1
 FOR-BIT-DATA
 PRIMARY-KEY
 FIELDPROC FP12
 CONSTRAINT
 NAMED CNST1
 FOREIGN-KEY
 IT-COL1
 KNOWN-AS CUST-NO

ORACLE-TABLE

 TABLESPACE OR-TS1
 PCTFREE 20
 MAXTRANS 200

AS DB2-EG3

User defined ORACLE
 member definition
 ORA-EG3

DB2 member definition
 DB2-EG2

DB2 CREATE opt-clauses� �

ALTER
DROP

member-name� �

SYSTEM ORACLE

SYBASE

INFORMIX

� �

RELEASE release VARIANT variant

db2-generation-options� �

ASG-Manager Products Relational Technology Support: DB2

474

where:2.

opt-clauses depends on the database system and are documented in specific Oracle
documentation.2.

member-name is the name of an encoded member that is either based-on a DB2
member type or an additional member type for a specific database system.2.

release is a valid release-identifier for that database system.2.

variant is a valid additional identifier.2.

SYSTEM, RELEASE, and VARIANT are values which are predefined and may be set in
the DB2 profile MPDY12PROF. The variables MPDY_DB_SYSTEM,
MPDY_DB_RELEASE_NO, and MPDY_DB_SYSTEM_VARIANT contain the
respective information during execution of a DB2 generation command.2.

475

Appendix C
Defining and Generating

DB2 Member Types
This Appendix describes how to define and generate DB2 member types.

Relationship Between DB2 Member Types
The following table shows the relationships that are possible between the member types
documenting your DB2 environment.

Table 25 DB2 Member Type Relationships

From Member Type Via Clause To Member Type

DB2-ALIAS AS
CREATOR-OWNER
FOR

DB2-ALIAS
DB2-USER, SQL-USER
DB2-TABLE, DB2-VIEW
SQL-TABLE, SQL-VIEW

DB2-COLLECTION AS
LOCATION

DB2-COLLECTION
DB2-LOCATION

DB2-DATABASE AS
LOCATION
STOGROUP

DB2-DATABASE
DB2-LOCATION
DB2-STOGROUP

DB2-INDEX AS
CONTAINS
CREATOR-OWNER
ON
STOGROUP

DB2-INDEX,
SQL-INDEX
ITEM, GROUP
DB2-USER, SQL-USER
DB2-TABLE,
SQL-TABLE
DB2-STOGROUP

DB2-LOCATION AS DB2-LOCATION

ASG-Manager Products Relational Technology Support: DB2

476

DB2-PACKAGE AS
MEMBER

COPY
QUALIFIER
CREATOR-OWNER
COLLECTION

DB2-PACKAGE
SYSTEM,
MMR-SYSTEM,
PROGRAM, MODULE
DB2-PACKAGE
DB2-USER, SQL-USER
DB2-USER, SQL-USER
DB2-COLLECTION

DB2-PLAN AS
CONTAINS

DB2-PLAN
SYSTEM,
MMR-SYSTEM,
PROGRAM, MODULE,
DB2-PACKAGE

DB2-PRIVILEGE AS

CONTAINS
GRANTOR
ON

TO
USE TABLESPACE
USE STOGROUP

DB2-PRIVILEGE,
SQL-PRIVILEGE
ITEM, GROUP
DB2-USER, SQL-USER
DB2-DATABASE
DB2-TABLE,
DB2-COLLECTION,
DB2-PACKAGE,
DB2-VIEW,DB2-PLAN
DB2-VIEW, SQL-TABLE
DB2-USER, SQL-USER
DB2-TBSPACE
DB2-STOGROUP

DB2-STOGROUP AS DB2-STOGROUP

DB2-TABLE AS
CONTAINS
CREATOR-OWNER
EDITPROC

FOREIGN-KEY
IN
LIKE

MEMBER
PRIMARY-KEY
REFERENCES
VALIDPROC

DB2-TABLE,
SQL-TABLE
ITEM, GROUP
DB2-USER, SQL-USER
SYSTEM,
MMR-SYSTEM,
PROGRAM, MODULE
ITEM, GROUP
DB2-TBSPACE
DB2-TABLE, DB2-VIEW
SQL-TABLE, SQL-VIEW
ITEM, GROUP
ITEM, GROUP
DB2-TABLE,
SQL-TABLE
SYSTEM,
MMR-SYSTEM,
PROGRAM, MODULE

Table 25 DB2 Member Type Relationships

From Member Type Via Clause To Member Type

Appendix C - Defining and Generating DB2 Member Types

477

Note:
Member typed DB2-TRIGGER is based on the DB2-INDEX for Manager Products
Version 2.5. Future releases my supply a base member type. Base Line Technology
(BLT) users should add appropriate definitions to their UDS (User Defined System) to
add this member type.2.

DB2-TBSPACE AS
IN
STOGROUP

DB2-TBSPACE
DB2-DATABASE
DB2-STOGROUP

DB2-PROCEDURE2. PARAMETERS
INPUTS
OUTPUT
UPDATES
CALLS
PASSING
PROCESSES
CREATOR-OWNER
FUNCTION
TYPE
CAST-FROM
COLUMNS
TABLE

ITEM, GROUP

DB2-PROCEDURE
ITEM, GROUP
DB2-DMS
DB2-USER
DB2-PROCDURE
ITEM
ITEM
ITEM
DB2-TABLE

DB2-TRIGGER2. AS
CREATOR-OWNER
ON

DB2-TRIGGER
DB2-USER
DB2-TABLE

DB2-USER AS
CONTAINS
SYNONYMS

LOCATION

DB2-USER, SQL-USER
DB2-USER, SQL-USER
DB2-TABLE, DB2-VIEW
DB2-ALIAS,
SQL-TABLE
SQL-VIEW
DB2-LOCATION

DB2-VIEW AS
CONTAINS
CREATOR-OWNER
FROM

DB2-VIEW, SQL-VIEW
ITEM, GROUP
DB2-USER, SQL-USER
DB2-TABLE,
DB2-VIEW,
SQL-TABLE, SQL-VIEW

SYSTEM, PROGRAM
MODULE

CREATOR-OWNER DB2-USER, SQL-USER

DISTINCT TYPE2. NAME ITEM

Table 25 DB2 Member Type Relationships

From Member Type Via Clause To Member Type

ASG-Manager Products Relational Technology Support: DB2

478

Data Types Generated from Form Descriptions
Table 26 Data Types Generated from Form Descriptions

ITEM
USAGE
Clause

ITEM
Form-
Description

DATA TYPES BY LANGUAGE:

SQL PL1 COBOL Assembler

TIME CHAR t TIME CHAR(t) PIC X(t) DS Clt

Other Accepted but should not be used.

TIME
STAMP

CHAR26 TIMESTAMP CHAR(26) PIC X(26) DS Cl26

Other Accepted but should not be used.

DATE CHAR d DATE CHAR(d) PIC X(d) DS Cld

Other Accepted but should not be used.

GRAPHIC CHAR p
p = 1..127

GRAPHIC(p) GRAPHIC
(p)

PIC G(p)
DISPLAY-1.

DS CL2p

CHAR p TO q
p = 1..127

VARGRAPHI
C
(q)

GRAPHIC
(q) VAR

10 x.
49 x-L PIC

DS
H.CL2q

CHAR p
p > 127

LONG
VARGRAPHI
C

GRAPHIC
(p) VAR

S9(4) COMP.
49 x-D PIC

DS
H.CL2p

CHAR p TO q
p > 127

GRAPHIC
(q) VAR

G(q/p)
DISPLAY-1.

DS

H.CL2q

Other Error.

MONEY Form-description is used as when no USAGE clause present.

POINTER Any Error Error Error Error

ROWID2. CHAR(14) ROWID CHAR(t) PIX X(t) DS CLT

BLOB
or
CLOB
or
DBCLOB

CHAR d
[K|M|G]

d=1...32767

BLOB
or
CLOB
or
DBCLOB

CHAR...

PIC...

DS C...

None BIN p
BIN p TO q
BIN n,m
p, q or n+m
= 1..4

SMALLINT FIXED BIN
(15)

PIC S9(4)
COMP

DS H

Appendix C - Defining and Generating DB2 Member Types

479

None BIN p
BIN p TO q
BIN n,m
p, q or n+m
= 5..9

INTEGER FIXED BIN
(31)

PIC S9(9)
COMP

DS F

None BIN p
BIN p TO q
BIN n,m
p, q or n+m
> 9

FLOAT(21) FLOAT
BIN
(21)

COMP-1 DS E

None DEC n,m
n+m = 1..18

DECIMAL
(n+m, m)

FIXED
DEC
(n+m, m)

PIC S9(n)V9(m)
COMP-3

DS
Plc’a.b’

None DEC p
p = 1..18

DECIMAL(p) FIXED
DEC
(p)

PIC S9(p)
COMP-3

DS
Plc’a’

None

None

DEC p TO q
q = 1..18
DECp
DEC p TO q
DEC n,m
p, q or n+m
= 1..6

DECIMAL(q)

Error.

FIXED
DEC
(q)

PIC S9(q)
COMP-3

DS
Plc’b’

None FLOAT p
FLOAT p TO
q
FLOAT n,m
p, q or n+m
= 1..6

FLOAT(21) FLOAT
BIN
(21)

COMP-1 DS E

None FLOAT p
FLOAT p TO
q
FLOAT n,m
p, q or n+m
> 6

FLOAT(53) FLOAT
BIN (53)

COMP-2 DS D

None CHAR p
p = 1..254

CHAR (p) CHAR (p) PIC X(p) DS Clp

None CHAR p TO q
p = 1..254

VARCHAR(q) CHAR (q)
VAR

10 x.
 49 x-L PIC

DS H,CLq

Table 26 Data Types Generated from Form Descriptions

ITEM
USAGE
Clause

ITEM
Form-
Description

DATA TYPES BY LANGUAGE:

SQL PL1 COBOL Assembler

ASG-Manager Products Relational Technology Support: DB2

480

Instead of an explicit type definition a reference to distinct-types is allowed by:2.5

2.5

where item is the member name of an ITEM (based) member which obeys the syntax to
define a DISTINCT TYPE:2.5

2.5

2.5

Explanation
Refer to Chapter 4, "Repository Definition," on page 91 for details of defining form
descriptions and generating data types from them.

A PICTURE clause in an ITEM member definition is interpreted as a form- description of
CHARACTER p, where p is the number of bytes that are generated from the PICTURE
clause when a record is produced from a member using the export panel or the
PRODUCE command. A column with a data type of CHAR p, LONG VARCHAR,
GRAPHIC p, LONG VARGRAPHIC, TIME, TIMESTAMP, or DATE is (depending on
the value of p and whether the ITEM has a USAGE clause) generated from the ITEM.

Refer to the ASG-Manager Products Source Language Generation manual for details of
the PRODUCE command.

None CHAR p
p > 254

LONG
VARCHAR

CHAR (p)
VAR

 S9(4) COMP.
 49 x-D PIC

DS H,CLp

None CHAR p TO q
p > 254

CHAR (q)
VAR

 X(q/p). DS H,CLq

None Other Error.

Table 26 Data Types Generated from Form Descriptions

ITEM
USAGE
Clause

ITEM
Form-
Description

DATA TYPES BY LANGUAGE:

SQL PL1 COBOL Assembler

HELD-AS
REPORTED-AS

 NAME-item

ENTERED-AS

DEFAULTED-AS

��

�� member type

HELD-AS
REPORTED-AS

format

ENTERED-AS

DEFAULTED-AS

�� DISTINCT-TYPE

Appendix C - Defining and Generating DB2 Member Types

481

Columns with data types of VARCHAR(q), where q is greater than 254, can be generated
from ITEMs with:

• A form-description of CHARACTER p TO q (where p is less than 255 and q has
the desired value)

and without:

• A USAGE clause.

Columns with data types of VARGRAPHIC(q), where q is greater than 127, can be
generated from ITEMs with:

• A form-description of CHARACTER p TO q (where p is less than 128 and q has
the desired value)

and

• A USAGE clause of GRAPHIC.

where:

p and q are integers.

t is a character field length with a default of eight and d is a character field length
with a default of ten. The systems administrator can tailor the value of t and d to be
compatible with your installation settings for time and date.

Although the USAGE clause and not the form-description is used to generate data
types of TIME, DATE, or TIMESTAMP we recommend that you make the
form-description match the data type by specifying CHAR t, CHAR d, or CHAR
26.

n indicates the number of decimal digits before the decimal point and m indicates
the number of decimal digits after the decimal point

x is the column name with underscores changed to hyphens. The data names x-L
and x-D are the result of suffixing x with -L or -D and then if necessary the data
name is reduced to 30 characters so as not to exceed the COBOL limit for name
lengths.

Refer to Appendix A, "Name Reduction Process" on page 467 for details of how names
are reduced.

ASG-Manager Products Relational Technology Support: DB2

482

c is the number of bytes required to store the decimal-packed number and can be
calculated from one of the following formulas:

• DEC n.m
 c = (n + m + 1)/2

• DEC p
 c = (p + 1)/2

• DEC p TO q
 c = (q + l)/2

rounded up to the nearest integer.

a is a sequence of nines. The number of nines is equal to the value of p or n

b is a sequence of nines. The number of nines is equal to the value of q or m.

NUMERIC-CHARACTER Form-descriptions
NUMERIC-CHARACTER form-descriptions may be used in DB2 column items. They
will generate either DECIMAL or CHARACTER data types, depending on the setting of
the profile variable MPDY_CM_NUM_GEN. This may be set to :DEC: or :CHAR:. The
default is DECIMAL data type generation. The exact format of the data generated is
described in "Data Types Generated from Form Descriptions" on page 478 under DEC or
CHAR. The data types will be identical to those generated for the selected
form-description.

483

Index

Numerics
2 295

A
Alias

documenting remote DB2 objects 332
AS clause 464

C
Columns

documenting data types 94
generating names 98

Commands 176
conventions page viii

D
Data types

documented in ITEMs 478
generating 94
represented by form description 94

DB2 BIND command 189
syntax 193

DB2 command output 54
DB2 LIST CYCLES 83

description 83
example 84

DB2 LIST TABLES 81–82
description 82
example 83

DB2 PLOT CLUSTER 63
cluster diagram 63
design relationship matrix 69
example 65

DB2 PLOT
REFERENTIAL-STRUCTURE
S 71
additional plots 76
example 80
layout 72
use of directories 77
use of pointers 74

DB2 REPORT 54

contents of tables 55
example 57
foreign key relationships 55

DB2 COMMENT command 200
syntax 210

DB2 CREATE command 206
syntax 210

DB2 database design
DB2 design

generating 34
populating the dictionary 36
reporting 35

entity and userview models
creating 32

examples 37
Department Model 37
introduction 37
Parts Model 47

introduction 28
overview

features to support DB2 31
referential structures and

cycles 31
relational schemas

generating 33
DB2 DATABASE member type 338

syntax 341
DB2 DEBUG command 213

syntax 216
DB2 DECLARE command 216

syntax 219
DB2 DROP command 221

syntax 225
DB2 GRANT command 227

syntax 230
DB2 LABEL command 200

syntax 204
DB2 LIST CYCLES command 232

syntax 233
DB2 LIST TABLES command 233

syntax 234
DB2 PLOT CLUSTER command 235

ASG-Manager Products Relational Technology Support: DB2

484

syntax 237
DB2 PLOT

REFERENTIAL-STRUCTURES
command 238
syntax 243

DB2 POPULATE command 243
syntax 254

DB2 PREVIEW command 255
syntax 265

DB2 PRODUCE command 267
syntax 273

DB2 profile
altering

DATE and TIME character field
lengths 115

DB2 subsystem or plan 123
DROP report layout 122
export-generated object name

length 123
generated column data type 124
indicator array name

suffixes 119
indicator structures 118
indicator suffixes 118
message tolerance level 121
release flag 117
release of DB2 117
space character for SQL

DECIMAL
datatypes 122

SQL escape character 121
user exits 126
variable-length column name

suffixes 119
width of SQL COMMENT ON

statements 122
generating

flat or nested data
structures 117

host language data structures
with SQL DECLARE
statements 117

object names and external
names from aliases 114

SQL COMMENT ON or
LABEL ON
statements 119

SQL DECLARE statements
with host language data
structures 117

two or three-part names 120
introduction 110
summary of variables 110

DB2 REBIND command 189

syntax 197
DB2 RECALCULATE command 275

syntax 277
DB2 REPORT command 278

syntax 281
DB2 REVOKE command 227

syntax 230
DB2 SIZE command 281

syntax 284
DB2 SYNONYM command 285

syntax 287
DB2-ALIAS 332
DB2-ALIAS member type 332

syntax 336
DB2-ALTER command 176

syntax 186
DB2-COLLECTION member type 336

syntax 337
DB2-DMS member type 341

syntax 342
DB2-INDEX member type 346

syntax 363
DB2-LOCATION member type 367

syntax 368
DB2-PACKAGE member type 369

syntax 373
DB2-PLAN member type 375

specifying
cache size 378
current server 378
system environment 378

syntax 380
DB2-PRIVILEGE member type 381

syntax 390
DB2-PROCEDURE member type 393
DB2-STOGROUP member type 396

syntax 398
DB2-TABLE member type 399

syntax 421
DB2-TBSPACE member type 425

syntax 434
DB2-TRIGGER member type 436
DB2-USER member type 437

syntax 441
DB2-VIEW member type 441

syntax 462
Default 150
Deriving names

catalogs 99
columns 98
databases 98
distributed objects 101
external objects 97
guidelines 101

Index

485

indexes 98
passwords 99
programs 99
storage groups 98
synonyms 99
table spaces 98
tables 98
views 98

Distributed network
documenting locations 367
documenting object aliases 332

Documenting
data types 94
DB2 objects 92
DB2 security system 96
different databases 471

Dynamic SQL functions
output 133
security and authorization 133
using Executive Routines

altering a table 134
assigning imported information

to Command
Variables 144

COMMAND and EXECUTIVE
members used 141

creating a table 135
creating and populating a

table 141
creating HELP text 147
defining a table 135
importing from tables and

views 138
inserting rows in a table 142
submitting prepared SQL

statements 146
variables used 139

E
Export to DB2

defining column data types 106
introduction 106
submitting generated output 107

EXTRACT DB2 command 289
syntax 295

F
Form description

representing data types 94

G
Generated member definitions

DB2 POPULATE and DB2
PREVIEW 85

Guidelines for naming objects 101

I
Import from DB2

column documentation 155
introduction 149
naming guidelines 152
tailoring

Corporate Executive
Routines 158

Global Variables used 160
Imported objects

default names and types given 150
Interrogation keywords

DB2 member types 103
ISQL command 296

syntax 298

L
Location

documenting 367

M
Member type

documenting the security system 96
identifier 92
relationships 475

N
Name editing options

dropping or replacing a name 328
inserting a string in a name 328

Name reduction process 467
NUMERIC-CHARACTER

Form-description 482

O
Objects in DB2

documenting 331
generating names 97

One-part names 101
Output generation options

examples 326
sending generated data to a

USER-MEMBER on the
MP-AID 324

sending generated output
to a partitioned data set 326
to a sequential data set 325

ASG-Manager Products Relational Technology Support: DB2

486

P
package/collection variables 169
packagelist entries, expanding 292
POPULATE command 299

syntax 300
PREVIEW IMPORT command 302

syntax 304

R
RADD command 306
REBIND 189
REBIND command 189

syntax 197
RECONCILE command 307

syntax 318
Re-using existing DB2 member

definitions 464
RIGN command 319
RREN command 320
RREP command 321
RUPD command 322

syntax 323

S
Security in DB2 documenting 96

T
Three-part names 100
Two-part names 99

U
user exit routines 124

writing 128
User exits

for accessing a repository
member 125

for one command/panel 129
for specified export functions 125
introduction 124

ASG Worldwide Headquarters Naples Florida USA I asg.com

	CD Contents
	Contents
	Index
	Numerics
	A
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication

	Introduction
	Features: The Tools Provided
	Corporate Repository
	Diagramming Functions
	Data Modeling and Design Functions
	Data Definition Language (DDL) Generator
	COBOL, PL/I, and Assembler Language Generator
	Dynamically Submitting SQL Statements to DB2 or SQL/DS
	Importing Information from DB2

	Functions: How to Use the Tools Provided
	Standards
	DB2 Database Design
	Implementation
	Maintenance
	Summary

	Benefits
	A Shared and Reusable Corporate Model
	Automated Design
	Conclusion

	What Do You Want To Do?
	ASG Support for Your DB2 Environment
	Designing a DB2 Database
	DB2 Database Design
	Producing Output Describing the DB2 Design

	DB2 Repository Definition
	Documenting a DB2 Dictionary Schema
	DB2 Object Definition

	Export to DB2
	Generating Output
	Tailoring Generated Output

	Dynamically Submitting SQL Statements
	Importing from DB2

	DB2 Database Design
	Introduction to DB2 Database Design
	Support for Referential Integrity
	Introduction to Referential Structures and Cycles
	Features to Support DB2

	Designing a DB2 Database
	Creating Entity and Userview Models
	Generating a Relational Schema
	Generating the DB2 Design
	Reporting the DB2 Design
	Populating the Dictionary with DB2 Members
	Examples of the DB2 Database Design Process

	DB2 Command Output
	Output from the DB2 REPORT Command
	Output from the DB2 PLOT CLUSTER Command
	Output from the DB2 PLOT REFERENTIAL-STRUCTURES Command
	Output from the DB2 LIST TABLES Command
	Output from the DB2 LIST CYCLES Command

	Generated DB2 Member Definitions
	Generated DB2-TABLE Member
	Generated DB2-INDEX Member
	Generated DB2-VIEW Member
	Generated SYSTEM Member

	Repository Definition
	Introduction to Documenting a DB2 DBMS
	Documenting DB2 Objects
	Documenting the Columns of Indexes, Tables, and Views
	Documenting DB2 Security Information
	Naming Conventions for DB2 Members
	Generating External Names
	Naming Guidelines

	Interrogating Your DB2 Dictionary Schema

	Export to DB2
	Generating Output
	Submitting Generated Output to Your Relational Environment

	Tailoring Output
	Introduction to Tailoring
	Generating Object Names and External Names from Aliases
	Tailoring DATE and TIME Character Field Lengths
	Generating a Host Language Data Structure with an SQL DECLARE Statement
	Generating an SQL DECLARE Statement with a Host Language Data Structure
	Setting the Release of DB2
	Setting the Release Flag
	Generating Flat or Nested Data Structures
	Generating Indicator Structures
	Generating Indicator Suffixes on Structures
	Setting Suffixes Applied to Indicator Array Names
	Setting Suffixes Applied to Variable-Length Column Names
	Automatically Generating SQL COMMENT ON/LABEL ON Statements
	Generating One-, Two-, or Three-part Names for DB2 Objects
	Setting a Tolerance Level for Output
	Setting the SQL Escape Character
	Setting Width of Output for SQL COMMENT ON Statements
	Setting Width/Indent of the SQL DROP Impact Analysis Report
	Allowing an Optional Space Character when Generating SQL DECIMAL Datatypes
	Accessing a Specific DB2 Subsystem or Plan
	Setting EXPORT Generated Object-name Length
	Setting the Generated Column Data Type
	Creating an INSERT Statement for Stored Procedures
	Introduction to User Exits
	Taking User Exits when Accessing a Repository Member
	Taking User Exits For Specified DB2 Export Functions
	Taking User Exits for an Individual Export Function

	Dynamic Import/Export
	Security and Authorization
	Output
	Using Executive Routines with Dynamic SQL Functions
	Variables Used for Dynamic Import/Export
	Control Variables
	Return Variables
	COMMAND and EXECUTIVE Members Used in Dynamic SQL Functions
	Creating and Populating a Table
	Inserting Rows into a Table
	Importing Information and Assigning it to Command Variables
	Submitting Any SQL Statement that Can Be Prepared
	Creating Your Own HELP Text

	Importing From DB2
	Introduction
	Naming Guidelines
	Documenting Columns

	Tailoring Import
	Tailorable Corporate Executive Routines
	Global Variables Used in the Import Commands

	Commands
	Command Descriptions
	DB2 ALTER
	DB2 BIND and DB2 REBIND
	DB2 COMMENT and DB2 LABEL
	DB2 CREATE
	DB2 DEBUG
	DB2 DECLARE
	DB2 DROP
	DB2 GRANT and DB2 REVOKE
	DB2 LIST CYCLES
	DB2 LIST TABLES
	DB2 PLOT CLUSTER
	DB2 PLOT REFERENTIAL-STRUCTURES
	DB2 POPULATE
	DB2 PREVIEW
	DB2 PRODUCE
	DB2 RECALCULATE
	DB2 REPORT
	DB2 SIZE
	DB2 SYNONYM
	EXTRACT DB2
	ISQL
	POPULATE
	PREVIEW IMPORT
	RADD
	RECONCILE
	RIGN
	RREN
	RREP
	RUPD

	Output Generation Options
	Sending Generated Output to a USER-MEMBER
	Sending Generated Output to a Sequential Dataset
	Sending Generated Output to a Partitioned Dataset
	Sending Generated Output to PRINT
	Examples of Output Generation Options

	Name Editing Options
	Dropping or Replacing a Name
	Inserting a Character String Within a Name
	Examples of Name Editing Options

	Repository Member Types
	Member Type Descriptions
	DB2-ALIAS
	DB2-COLLECTION
	DB2-DATABASE
	DB2-DMS
	DB2-INDEX
	DB2-LOCATION
	DB2-PACKAGE
	DB2-PLAN
	DB2-PRIVILEGE
	DB2-PROCEDURE
	DB2-RENAME
	DB2-STOGROUP
	DB2-TABLE
	DB2-TBSPACE
	DB2-TRIGGER
	DB2-USER
	DB2-VIEW

	Reusing Existing Member Definitions

	Appendix A
	Description
	Example

	Appendix B
	Appendix C
	Relationship Between DB2 Member Types
	Data Types Generated from Form Descriptions
	Explanation
	NUMERIC-CHARACTER Form-descriptions

	name:
	number:
	contact name:
	publication:
	product:
	version number:
	pub date:
	comments:

